Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Optica ; 8(5)2021.
Article in English | MEDLINE | ID: mdl-36578655

ABSTRACT

We present high-reflectivity substrate-transferred single-crystal GaAs/AlGaAs interference coatings at a center wavelength of 4.54 µm with record-low excess optical loss below 10 parts per million. These high-performance mirrors are realized via a novel microfabrication process that differs significantly from the production of amorphous multilayers generated via physical vapor deposition processes. This new process enables reduced scatter loss due to the low surface and interfacial roughness, while low background doping in epitaxial growth ensures strongly reduced absorption. We report on a suite of optical measurements, including cavity ring-down, transmittance spectroscopy, and direct absorption tests to reveal the optical losses for a set of prototype mirrors. In the course of these measurements, we observe a unique polarization-orientation-dependent loss mechanism which we attribute to elastic anisotropy of these strained epitaxial multilayers. A future increase in layer count and a corresponding reduction of transmittance will enable optical resonators with a finesse in excess of 100 000 in the mid-infrared spectral region, allowing for advances in high resolution spectroscopy, narrow-linewidth laser stabilization, and ultrasensitive measurements of various light-matter interactions.

2.
J Phys Condens Matter ; 29(9): 095303, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28059776

ABSTRACT

The effect of B and P dopants on the band structure of Si nanowires is studied using electronic structure calculations based on density functional theory. At low concentrations a dispersionless band is formed, clearly distinguishable from the valence and conduction bands. Although this band is evidently induced by the dopant impurity, it turns out to have purely Si character. These results can be rigorously analyzed in the framework of effective mass theory. In the process we resolve some common misconceptions about the physics of hydrogenic shallow impurities, which can be more clearly elucidated in the case of nanowires than would be possible for bulk Si. We also show the importance of correctly describing the effect of dielectric confinement, which is not included in traditional electronic structure calculations, by comparing the obtained results with those of G0W0 calculations.

3.
J Phys Condens Matter ; 26(30): 305502, 2014 Jul 30.
Article in English | MEDLINE | ID: mdl-25007714

ABSTRACT

Van der Waals interactions play an important role in layered materials such as MoS2 and MoO3. Within density functional theory, several methods have been developed to explicitly include van der Waals interactions. We compare the performance of several of these functionals in describing the structural and electronic properties of MoS2 and MoO3. We include functionals based on the local density or generalized gradient approximations, but also based on hybrid functionals. The coupling of the semiempirical Grimme D2 method with the hybrid functional HSE06 is shown to lead to a very good description of both structural and electronic properties.

4.
J Phys Condens Matter ; 23(33): 334212, 2011 Aug 24.
Article in English | MEDLINE | ID: mdl-21813965

ABSTRACT

Using first-principles calculations we have studied the electronic and structural properties of cation vacancies and their complexes with hydrogen impurities in SnO(2), In(2)O(3) and ß-Ga(2)O(3). We find that cation vacancies have high formation energies in SnO(2) and In(2)O(3) even in the most favorable conditions. Their formation energies are significantly lower in ß-Ga(2)O(3). Cation vacancies, which are compensating acceptors, strongly interact with H impurities resulting in complexes with low formation energies and large binding energies, stable up to temperatures over 730 °C. Our results indicate that hydrogen has beneficial effects on the conductivity of transparent conducting oxides: it increases the carrier concentration by acting as a donor in the form of isolated interstitials, and by passivating compensating acceptors such as cation vacancies; in addition, it potentially enhances carrier mobility by reducing the charge of negatively charged scattering centers. We have also computed vibrational frequencies associated with the isolated and complexed hydrogen, to aid in the microscopic identification of centers observed by vibrational spectroscopy.


Subject(s)
Gallium/chemistry , Hydrogen/chemistry , Indium/chemistry , Models, Chemical , Semiconductors , Tin Compounds/chemistry , Hydrogenation
5.
Nano Lett ; 9(1): 107-11, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19053842

ABSTRACT

We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.


Subject(s)
Crystallization/methods , Models, Chemical , Models, Molecular , Nanotechnology/methods , Nanotubes/chemistry , Nanotubes/ultrastructure , Silicon/chemistry , Computer Simulation , Electric Conductivity , Electrons , Macromolecular Substances/chemistry , Molecular Conformation , Particle Size , Surface Properties
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(3 Pt 2): 036606, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17500808

ABSTRACT

A classical two-dimensional (2D) model for an artificial atom is used to make a numerical "exact" study of elastic and nonelastic scattering. Interesting differences in the scattering angle distribution between this model and the well-known Rutherford scattering are found in the small energy and/or small impact parameter scattering regime. For scattering off a classical 2D hydrogen atom different phenomena such as ionization, exchange of particles, and inelastic scattering can occur. A scattering regime diagram is constructed as function of the impact parameter (b) and the initial velocity (v) of the incoming particle. In a small regime of the (b,v) space the system exhibits chaos, which is studied in more detail. Analytic expressions for the scattering angle are given in the high impact parameter asymptotic limit.

SELECTION OF CITATIONS
SEARCH DETAIL