Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Front Immunol ; 15: 1351656, 2024.
Article in English | MEDLINE | ID: mdl-38711524

ABSTRACT

Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction.


Subject(s)
Carrier Proteins , Complement C1q , Immune Checkpoint Inhibitors , Membrane Glycoproteins , Mitochondrial Proteins , Neoplasms , Receptors, Complement , Humans , Complement C1q/metabolism , Complement C1q/immunology , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Receptors, Complement/metabolism , Animals , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Tumor Microenvironment/immunology
3.
Front Oncol ; 9: 1042, 2019.
Article in English | MEDLINE | ID: mdl-31681580

ABSTRACT

Introduction: Globular C1q receptor (gC1qR/p32/HABP1) is overexpressed in a variety of cancers, particularly adenocarcinomas. This study investigated gC1qR expression in malignant pleural mesothelioma (MPM) and its pathophysiologic correlates in a surgical patient cohort. Methods: Tissue microarrays comprising 6 tumoral and 3 stromal cores from 265 patients with MPM (216 epithelioid, 26 biphasic, and 23 sarcomatoid; 1989-2010) were investigated by immunohistochemistry for gC1qR expression (intensity and distribution by H-score, range 0-300), and immune cell infiltration. Overall survival (OS) was analyzed by the Kaplan-Meier method (high vs. low gC1qR expression delineated by median score) in the whole cohort and by neoadjuvant chemotherapy (NAC) status. Multivariable Cox analysis included stage, chemotherapy, and immune cell infiltration. Results: gC1qR was overexpressed in all histological types of MPMs (263/265, 99.2%) compared to normal pleura. In epithelioid MPM, high gC1qR expression was associated with better OS (median 25 vs. 11 months; p = 0.020) among NAC patients, and among patients without NAC (No-NAC) but who received post-operative chemotherapy (median OS 38 vs. 19 months; p = 0.0007). In multivariable analysis, high gC1qR expression was an independent factor for improved OS in patients treated with NAC. In the No-NAC cohort, high gC1qR expression correlated with lower tumor stage. Moreover, the influence of Ki67 and CD4 T-cell infiltration on OS were more pronounced among patients with high gC1qR expression. Conclusion: This is the first description of gC1qR expression in MPM. The data identify gC1qR as a potential new prognostic factor in patients treated with surgery and chemotherapy.

4.
Semin Immunol ; 45: 101338, 2019 10.
Article in English | MEDLINE | ID: mdl-31744753

ABSTRACT

In the past several years, a number of C1q binding surface proteins or receptors have been described. This is not of course surprising considering the complexity of the C1q molecule and its ability to bind to a wide range of cellular and plasma proteins via both its collagen-like [cC1q] region and its heterotrimeric globular heads [gC1q] each of which in turn is capable of binding a specific ligand. However, while each of these "receptor" molecules undoubtedly plays a specific function within its restricted microenvironment, and therefore merits full attention, this review nonetheless, will singularly focus on the structure and function of gC1qR-a multi-functional and multi-compartmental protein, which plays an important role in inflammation, infection, and cancer. Although first identified as a receptor for C1q, gC1qR has been shown to bind to a plethora of proteins found in plasma, on the cell surface and on pathogenic microorganisms. The plasma proteins that bind to gC1qR are mostly blood coagulation proteins and include high molecular weight kininogen [HK], Factor XII [Hageman factor], fibrinogen, thrombin [FII], and multimeric vitronectin. This suggests that gC1qR can play an important role in modulating not only of fibrin formation, particularly at local sites of immune injury and/or inflammation, but by activating the kinin/kallikrein system, it is also able to generate, bradykinin, a powerful vasoactive peptide that is largely responsible for the swelling seen in angioedema. Another important function of gC1qR is in cancer, where it has been shown to play a role in tumor cell survival, growth and metastatic invasion by interacting with critical molecules in the tumor cell microenvironment including those of the complement system and kinin system. Finally, by virtue of its ability to interact with a growing list of pathogen-associated molecules, including bacterial and viral ligands, gC1qR is becoming recognized as an important pathogen recognition receptor [PRR]. Given the numerous roles it plays in a growing list of disease settings, gC1qR has now become a potential target for the development of monoclonal antibody-based and/or small molecule-based therapies.


Subject(s)
Membrane Glycoproteins/metabolism , Receptors, Complement/metabolism , Animals , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromosome Mapping , Disease Susceptibility , Host-Parasite Interactions , Host-Pathogen Interactions , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Structure , Receptors, Complement/chemistry , Receptors, Complement/genetics , Structure-Activity Relationship
5.
Am J Clin Pathol ; 150(2): 116-120, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29901688

ABSTRACT

OBJECTIVES: To evaluate the use of a pretest probability score (4Ts score) in cancer patients to guide ordering of laboratory screening tests for heparin-induced thrombocytopenia (HIT). METHODS: A retrospective chart review was conducted for patients (n = 140) in whom laboratory testing for HIT was requested. 4Ts scores were calculated and correlated with heparin-endogenous platelet factor 4 antibody enzyme-linked immunosorbent assay (ELISA) test results. RESULTS: All patients with a high pretest probability of HIT (4Ts score = 6-7) had positive ELISA results, compared to 26.1% of patients with intermediate (4Ts score = 4-5) and 4.3% of patients with low (4Ts score ≤3) pretest probability. No patients with 4Ts scores of 2 or less had positive ELISA results. CONCLUSIONS: HIT can be ruled out in cancer patients (negative predictive value and sensitivity = 100%) with low pretest probability, defined by 4Ts scores of 2 or less, significantly reducing the need for laboratory testing in this patient population.


Subject(s)
Neoplasms , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis , Adult , Aged , Anticoagulants/adverse effects , Enzyme-Linked Immunosorbent Assay , Female , Heparin/adverse effects , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors
6.
Front Immunol ; 9: 162, 2018.
Article in English | MEDLINE | ID: mdl-29459870

ABSTRACT

The immunopathological functions associated with human C1q are still growing in terms of novelty, diversity, and pathologic relevance. It is, therefore, not surprising that C1q is being recognized as an important molecular bridge between innate and adaptive immunity. The secret of this functional diversity, in turn, resides in the elegant but complex structure of the C1q molecule, which is assembled from three distinct gene products: A, B, and C, each of which has evolved from a separate and unique ancestral gene template. The C1q molecule is made up of 6A, 6B, and 6C polypeptide chains, which are held together through strong covalent and non-covalent bonds to form the 18-chain, bouquet-of-flower-like protein that we know today. The assembled C1q protein displays at least two distinct structural and functional regions: the collagen-like region (cC1q) and the globular head region (gC1q), each being capable of driving a diverse range of ligand- or receptor-mediated biological functions. What is most intriguing, however, is the observation that most of the functions appear to be predominantly driven by the A-chain of the molecule, which begs the question: what are the evolutionary modifications or rearrangements that singularly shaped the primordial A-chain gene to become a pluripotent and versatile component of the intact C1q molecule? Here, we revisit and discuss some of the known unique structural and functional features of the A-chain, which may have contributed to its versatility.


Subject(s)
Complement C1q/chemistry , Complement C1q/genetics , Peptides/chemistry , Adaptive Immunity , Complement C1q/immunology , Complement Pathway, Classical/immunology , Humans , Immunoglobulin G/immunology , Ligands , Membrane Glycoproteins/immunology , Peptides/genetics , Protein Structure, Tertiary , Receptors, Complement/immunology
7.
Mol Immunol ; 84: 26-33, 2017 04.
Article in English | MEDLINE | ID: mdl-27914690

ABSTRACT

Most of the complement proteins in circulation are, by and large, synthesized in the liver. However data accumulated over the past several decades provide incontrovertible evidence that some if not most of the individual complement proteins are also synthesized extrahepatically by activated as well as non-activated cells. The question that is finally being addressed by various investigators is: are the locally synthesized proteins solely responsible for the myriad of biological functions in situ without the contribution of systemic complement? The answer is probably "yes". Among the proteins that are synthesized locally, C1q takes center stage for several reasons. First, it is synthesized predominantly by potent antigen presenting cells such as monocytes, macrophages and dendritic cells (DCs), which by itself is a clue that it plays an important role in antigen presentation and/or DC maturation. Second, it is transiently anchored on the cell surface via a transmembrane domain located in its A chain before it is cleaved off and released into the pericellular milieu. The membrane-associated C1q in turn, is able to sense danger patterns via its versatile antigen-capturing globular head domains. More importantly, locally synthesized C1q has been shown to induce a plethora of biological functions through the induction of immunomodulatory molecules by an autocrine- or paracrine- mediated signaling in a manner that mimics those of TNFα. These include recognition of pathogen- and danger- associated molecular patterns, phagocytosis, angiogenesis, apoptosis and induction of cytokines or chemokines that are important in modulating the inflammatory response. The functional convergence between C1q and TNFα in turn is attributed to their shared genetic ancestry. In this paper, we will infer to the aforementioned "local-synthesis-for-local function" paradigm using as an example, the role played by locally synthesized C1q in autoimmunity in general and in systemic lupus erythematosus in particular.


Subject(s)
Complement C1q/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Animals , Autocrine Communication/immunology , Humans , Paracrine Communication/immunology
9.
Immunol Rev ; 274(1): 281-289, 2016 11.
Article in English | MEDLINE | ID: mdl-27782339

ABSTRACT

The blood plasma contains four biologically important proteolytic cascades, which probably evolved from the same ancestral gene. This in part may explain why each cascade has very similar "initiating trigger" followed by sequential and cascade-like downstream enzymatic activation pattern. The four cascades are: the complement system, the blood clotting cascade, the fibrinolytic system, and the kallikrein-kinin system. Although much has been written about the interplay between all these enzymatic cascades, the cross-talk between the complement and the kinin generating systems has become particularly relevant as this interaction results in the generation of nascent molecules that have significant impact in various inflammatory diseases including angioedema and cancer. In this review, we will focus on the consequences of the interplay between the two systems by highlighting the role of a novel molecular link called gC1qR. Although this protein was first identified as a receptor for C1q, it is now recognized as a multiligand binding cellular protein, which serves not only as C1q receptor, but also as high affinity (KD  ≤ 0.8 nM) binding site for both high molecular weight kininogen (HK) and factor XII (FXII). At inflammatory sites, where atherogenic factors such as immune complexes and/or pathogens can activate the endothelial cell into a procoagulant and proinflammatory surface, the two pathways are activated to generate vasoactive peptides that contribute in various ways to the inflammatory processes associated with numerous diseases. More importantly, since recent observations strongly suggest an important role for both pathways in cancer, we will focus on how a growing tumor cluster can employ the byproducts derived from the two activation systems to ensure not only its survival and growth, but also its escape into distal sites of colonization.


Subject(s)
Angioedema/immunology , Atherosclerosis/immunology , Complement C1q/metabolism , Factor XIa/metabolism , Immunity, Innate , Inflammation/immunology , Neoplasms/immunology , Animals , Humans , Proteolysis , Receptor Cross-Talk , Signal Transduction
10.
Mol Immunol ; 74: 18-26, 2016 06.
Article in English | MEDLINE | ID: mdl-27111569

ABSTRACT

A substantial body of evidence accumulated over the past 20 years supports the concept that gC1qR is a major pathogen-associated pattern recognition receptor (PRR). This conclusion is based on the fact that, a wide range of bacterial and viral ligands are able to exploit gC1qR to either suppress the host's immune response and thus enhance their survival, or to gain access into cells to initiate disease. Of the extensive array of viral ligands that have affinity for gC1qR, the HIV-1 envelope glycoprotein gp41, and the core protein of hepatitis C virus (HCV) are of major interest as they are known to contribute to the high morbidity and mortality caused by these pathogens. While the HCV core protein binds gC1qR and suppresses T cell proliferation resulting in a significantly diminished immune response, the gp41 employs gC1qR to induce the surface expression of the NK cell ligand, NKp44L, on uninfected CD4(+) T cells, thereby rendering them susceptible to autologous destruction by NKp44 receptor expressing NK cells. Because of the potential for the design of peptide-based or antibody-based therapeutic options, the present studies were undertaken to define the gC1qR interaction sites for these pathogen-associated molecular ligands. Employing a solid phase microplate-binding assay, we examined the binding of each viral ligand to wild type gC1qR and 11 gC1qR deletion mutants. The results obtained from these studies have identified two major HCV core protein sites on a domain of gC1qR comprising of residues 144-148 and 196-202. Domain 196-202 in turn, is located in the last half of the larger gC1qR segment encoded by exons IV-VI (residues 159-282), which was proposed previously to contain the site for HCV core protein. The major gC1qR site for gp41 on the other hand, was found to be in a highly conserved region encoded by exon IV and comprises of residues 174-180. Interestingly, gC1qR residues 174-180 also constitute the cell surface-binding site for soluble gC1qR (sgC1qR), which can bind to the cell surface in an autocrine/paracrine manner via surface expressed fibrinogen or other membrane molecules. The identification of the sites for these viral ligands should therefore provide additional targets for the design of peptide-based or antigen-based therapeutic strategies.


Subject(s)
Carrier Proteins/chemistry , HIV Envelope Protein gp41/immunology , Mitochondrial Proteins/chemistry , Receptors, Pattern Recognition/chemistry , Viral Core Proteins/immunology , Binding Sites/immunology , CD4-Positive T-Lymphocytes/immunology , Carrier Proteins/immunology , Humans , Mitochondrial Proteins/immunology , Monocytes/immunology , Receptors, Pattern Recognition/immunology , U937 Cells
11.
Neurocrit Care ; 24(1): 6-46, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26714677

ABSTRACT

BACKGROUND: The use of antithrombotic agents, including anticoagulants, antiplatelet agents, and thrombolytics has increased over the last decade and is expected to continue to rise. Although antithrombotic-associated intracranial hemorrhage can be devastating, rapid reversal of coagulopathy may help limit hematoma expansion and improve outcomes. METHODS: The Neurocritical Care Society, in conjunction with the Society of Critical Care Medicine, organized an international, multi-institutional committee with expertise in neurocritical care, neurology, neurosurgery, stroke, hematology, hemato-pathology, emergency medicine, pharmacy, nursing, and guideline development to evaluate the literature and develop an evidence-based practice guideline. Formalized literature searches were conducted, and studies meeting the criteria established by the committee were evaluated. RESULTS: Utilizing the GRADE methodology, the committee developed recommendations for reversal of vitamin K antagonists, direct factor Xa antagonists, direct thrombin inhibitors, unfractionated heparin, low-molecular weight heparin, heparinoids, pentasaccharides, thrombolytics, and antiplatelet agents in the setting of intracranial hemorrhage. CONCLUSIONS: This guideline provides timely, evidence-based reversal strategies to assist practitioners in the care of patients with antithrombotic-associated intracranial hemorrhage.


Subject(s)
Critical Care/standards , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/adverse effects , Intracranial Hemorrhages/chemically induced , Intracranial Hemorrhages/drug therapy , Neurology/standards , Practice Guidelines as Topic/standards , Societies, Medical/standards , Humans
13.
Acad Pathol ; 2(4): 2374289515605336, 2015.
Article in English | MEDLINE | ID: mdl-28725750

ABSTRACT

The practice of pathology is not generally addressed in the undergraduate medical school curriculum. It is desirable to develop practical pathology competencies in the fields of anatomic pathology and laboratory medicine for every graduating medical student to facilitate (1) instruction in effective utilization of these services for optimal patient care, (2) recognition of the role of pathologists and laboratory scientists as consultants, and (3) exposure to the field of pathology as a possible career choice. A national committee was formed, including experts in anatomic pathology and/or laboratory medicine and in medical education. Suggested practical pathology competencies were developed in 9 subspecialty domains based on literature review and committee deliberations. The competencies were distributed in the form of a survey in late 2012 through the first half of 2013 to the medical education community for feedback, which was subjected to quantitative and qualitative analysis. An approval rate of ≥80% constituted consensus for adoption of a competency, with additional inclusions/modifications considered following committee review of comments. The survey included 79 proposed competencies. There were 265 respondents, the majority being pathologists. Seventy-two percent (57 of 79) of the competencies were approved by ≥80% of respondents. Numerous comments (N = 503) provided a robust resource for qualitative analysis. Following committee review, 71 competencies (including 27 modified and 3 new competencies) were considered to be essential for undifferentiated graduating medical students. Guidelines for practical pathology competencies have been developed, with the hope that they will be implemented in undergraduate medical school curricula.

14.
Am J Clin Pathol ; 142(5): 647-56, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25319980

ABSTRACT

OBJECTIVES: To develop reference ranges for platelet aggregation using the Multiplate analyzer (Roche Diagnostics, Mannheim, Germany) in blood anticoagulated with sodium citrate (Na-citrate), lithium heparin (Li-heparin), or hirudin. METHODS: The study was performed at three sites on consented, healthy adults (n = 193) not taking antiplatelet medication. Platelet aggregation was evaluated in response to adenosine-5'-diphosphate, arachidonic acid, collagen, thrombin receptor activating peptide, ristocetin, and adenosine-5'-diphosphate combined with prostaglandin E1. Precision testing was conducted using healthy donors and donors taking aspirin. RESULTS: Whole-blood platelet aggregation showed anticoagulant-dependent differences in platelet responses to all agonists. Samples collected in Na-citrate demonstrated the lowest responses to all agonists. The highest responses were obtained using Li-heparin. Precision testing revealed high variability in platelet aggregation at lower agonist doses, regardless of anticoagulant. Highest platelet response variations occurred in response to arachidonic acid in blood anticoagulated with hirudin from participants taking aspirin. CONCLUSIONS: These data demonstrate the importance of establishing locally relevant reference ranges.


Subject(s)
Blood Platelets/cytology , Platelet Aggregation , Platelet Function Tests/instrumentation , Adult , Aged , Anticoagulants/pharmacology , Blood Platelets/drug effects , Citrates/pharmacology , Female , Heparin/pharmacology , Hirudins/pharmacology , Humans , Male , Middle Aged , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Function Tests/standards , Reference Standards , Reference Values , Sodium Citrate , Young Adult
15.
Am J Clin Pathol ; 142(4): 506-12, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25239418

ABSTRACT

OBJECTIVES: Evaluation of anemia, particularly iron deficiency, in patients with cancer is difficult. This study examined using the hemoglobin content of reticulocytes (RET-He) to rule out iron deficiency, as defined by serum iron studies (transferrin saturation <20%, serum iron <40 µg/dL, and ferritin <100 ng/mL), in an unselected cancer patient population. METHODS: Patients were entered into the study based on the existence of concurrent laboratory test requests for CBC and serum iron studies. RESULTS: Using a threshold of 32 pg/cell, RET-He ruled out iron deficiency with a negative predictive value (NPV) of 98.5% and 100%, respectively, in the study population (n = 209) and in a subpopulation of patients with low reticulocyte counts (n = 19). In comparison, the NPV of traditional CBC parameters (hemoglobin, <11 g/dL; mean corpuscular volume, <80 fL) was only 88.5%. CONCLUSIONS: These results support the use of RET-He in the evaluation of iron deficiency in a cancer care setting.


Subject(s)
Anemia, Iron-Deficiency/diagnosis , Hemoglobins/analysis , Iron/blood , Neoplasms/blood , Reticulocytes/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/complications , Child , Child, Preschool , Erythrocyte Indices , Female , Ferritins/blood , Humans , Infant , Male , Middle Aged , Neoplasms/complications , Sensitivity and Specificity , Transferrin/analysis , Young Adult
16.
Front Immunol ; 5: 278, 2014.
Article in English | MEDLINE | ID: mdl-25018754

ABSTRACT

The ability of circulating blood monocytes to express C1q receptors (cC1qR and gC1qR) as well as to synthesize and secrete the classical pathway proteins C1q, C1r, and C1s and their regulator, C1-INH is very well established. What is intriguing, however, is that, in addition to secretion of the individual C1 proteins monocytes are also able to display macromolecular C1 on their surface in a manner that is stable and functional. The cell surface C1 complex is presumably formed by a Ca(2+)-dependent association of the C1r2⋅C1s2 tetramer to C1q, which in turn is anchored via a membrane-binding domain located in the N-terminus of its A-chain as shown previously. Monocytes, which circulate in the blood for 1-3 days before they move into tissues throughout the body, not only serve as precursors of macrophages and dendritic cells (DCs), but also fulfill three main functions in the immune system: phagocytosis, antigen presentation, and cytokine production. Since the globular heads of C1q within the membrane associated C1 are displayed outwardly, we hypothesize that their main function - especially in circulating monocytes - is to recognize and capture circulating immune complexes or pathogen-associated molecular patterns in the blood. This in turn may give crucial signal, which drives the monocytes to migrate into tissues, differentiate into macrophages or DCs, and initiate the process of antigen elimination. Unoccupied C1q on the other hand may serve to keep monocytes in a pre-dendritic phenotype by silencing key molecular players thus ensuring that unwarranted DC-driven immune response does not occur. In this paper, we will discuss the role of monocyte/DC-associated C1q receptors, macromolecular C1 as well as secreted C1q in both innate and acquired immune responses.

17.
Mol Immunol ; 61(2): 100-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25044096

ABSTRACT

The survival and growth of a primary tumor depends, by and large, on three major events: immune evasion, angiogenesis and metastasis. Tumor cells are "modified self", and as such express a plethora of modified surface antigens capable of inducing antibody production. Anti-tumor cell antibodies should, in theory, activate complement resulting in cell destruction. But this is not the case. Akin to many pathogenic microorganisms whose survival depends on evading the immune system, cancer cells have also evolved diverse mechanisms to prevent host mediated cell destruction by either retaining critical regulatory molecules or by hijacking host proteins to ensure their survival. Although immune evasion, angiogenesis and metastasis are complex biological processes involving a myriad of tumor associated proteins, enzymes, and cytokines, C1qRs can, nonetheless play an important role in all or part of these processes. Although both cC1qR/CR and gC1qR are expressed by all somatic cells, with the exception of red blood cells, both are highly upregulated on almost all types of tumors. It is not surprising therefore that blockade of C1qR on tumor cells inhibits their proliferation suggesting the significance of C1qRs in tumor growth and progression. Interestingly, the two C1q receptors: cC1qR/CR and gC1qR play a differential role in carcinogenesis. While gC1qR promotes tumor cell survival by enhancing angiogenesis and metastasis and also by contributing to the hypercoagulable and prothrombotic microenvironment, cC1qR/CR expression represents a pro-phagocytic "eat-me" signal through which cC1qR/CR expressing tumor cells are tagged for destruction by macrophages. The data accumulated to date therefore identify gC1qR and cC1qR/CR as potential targets for the design of either protein-based, antibody-based or chemical based therapeutic intervention that could be used to enhance conventional anti-cancer therapy. The inhibition of tumor cell proliferation by monoclonal antibody recognizing the C1q site on gC1qR, as well as the identification of agents such as anthracyclin that enhance cC1qR/CR expression on tumor cells, are indeed steps in the right direction.


Subject(s)
Calreticulin/metabolism , Carrier Proteins/metabolism , Mitochondrial Proteins/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Animals , Calreticulin/chemistry , Calreticulin/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Complement C1q/chemistry , Complement C1q/immunology , Complement C1q/metabolism , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Neoplasms/genetics
18.
J Immunol ; 192(1): 377-84, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24319267

ABSTRACT

Bradykinin (BK) is one of the most potent vasodilator agonists known and belongs to the kinin family of proinflammatory peptides. BK induces its activity via two G protein-coupled receptors: BK receptor 1 (B1R) and BK receptor 2. Although BK receptor 2 is constitutively expressed on endothelial cells (ECs), B1R is induced by IL-1ß. The C1q receptor, receptor for the globular heads of C1q (gC1qR), which plays a role in BK generation, is expressed on activated ECs and is also secreted as soluble gC1qR (sgC1qR). Because sgC1qR can bind to ECs, we hypothesized that it may also serve as an autocrine/paracrine signal for the induction of B1R expression. In this study, we show that gC1qR binds to ECs via a highly conserved domain consisting of residues 174-180, as assessed by solid-phase binding assay and deconvolution fluorescence microscopy. Incubation of ECs (24 h, 37 °C) with sgC1qR resulted in enhancement of B1R expression, whereas incubation with gC1qR lacking aa 174-180 and 154-162 had a diminished effect. Binding of sgC1qR to ECs was through surface-bound fibrinogen and was inhibited by anti-fibrinogen. In summary, our data suggest that, at sites of inflammation, sgC1qR can enhance vascular permeability by upregulation of B1R expression through de novo synthesis, as well as rapid translocation of preformed B1R.


Subject(s)
Autocrine Communication , Carrier Proteins/metabolism , Endothelial Cells/metabolism , Mitochondrial Proteins/metabolism , Receptor, Bradykinin B1/metabolism , Signal Transduction , Autocrine Communication/drug effects , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/pharmacology , Cell Line , Cell Membrane/metabolism , Endothelial Cells/drug effects , Fibrinogen/metabolism , Gene Expression Regulation/drug effects , Humans , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/pharmacology , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Receptor, Bradykinin B1/genetics , Signal Transduction/drug effects
19.
Methods Mol Biol ; 1100: 319-27, 2014.
Article in English | MEDLINE | ID: mdl-24218271

ABSTRACT

The recognition subunit of C1, C1q, has emerged as an important player in various pathophysiologic conditions largely in part due to its ability to interact with pathogen-associated or cell surface expressed ligands and receptors. Identification and purification of these molecules is therefore of paramount importance if we are to procure valuable information with regards to the structure, function, and cell surface distribution. Since the interaction of C1q is better served when the receptors are purified from homologous species, we discuss here a simple guideline for the purification and characterization of the two C1q receptors, cC1qR (calreticulin) and gC1qR, from human cell lines.


Subject(s)
Membrane Glycoproteins/isolation & purification , Membrane Glycoproteins/metabolism , Receptors, Complement/isolation & purification , Receptors, Complement/metabolism , Biotinylation , Cell Culture Techniques , Cell Membrane/chemistry , Cell Membrane/metabolism , Chromatography, Liquid/methods , Humans , Membrane Glycoproteins/chemistry , Receptors, Complement/chemistry , U937 Cells
20.
Adv Exp Med Biol ; 735: 97-110, 2013.
Article in English | MEDLINE | ID: mdl-23402021

ABSTRACT

Abstract The receptor for the globular heads of C1q, gC1qR/p33, is a widely expressed cellular protein, which binds to diverse ligands including plasma proteins, cellular proteins, and microbial ligands. In addition to C1q, gC1qR also binds high molecular weight kininogen (HK), which also has two other cell surface sites, namely, cytokeratin 1 and urokinase plasminogen activator receptor (uPAR). On endothelial cells (ECs), the three molecules form two closely associated bimolecular complexes of gC1qR/cytokeratin 1 and uPAR/cytokeratin 1. However, by virtue of its high affinity for HK, gC1qR plays a central role in the assembly of the kallikrein-kinin system, leading to the generation of bradykinin (BK). BK in turn is largely responsible for the vascular leakage and associated inflammation seen in angioedema patients. Therefore, blockade of gC1qR by inhibitory peptides or antibodies may not only prevent the generation of BK but also reduce Clq-induced or microbial-ligand-induced inflammatory responses. Employing synthetic peptides and gClqR deletion mutants, we confirmed previously predicted sites for C1q (residues 75-96) and HK (residues 204-218) and identified additional sites for both C1q and HK (residues 190-202), for C1q (residues 144-162), and for HIV-1 gp41 (residues 174-180). With the exception of residues 75-96, which is located in the alphaA coiled-coil N-terminal segment, most of the identified residues form part of the highly charged loops connecting the various beta-strands in the crystal structure. Taken together, the data support the notion that gC1qR could serve as a novel molecular target for the design of antibody-based and/or peptide-based therapy to attenuate acute and/or chronic inflammation associated with vascular leakage and infection.


Subject(s)
Complement C1q/drug effects , Infections/drug therapy , Inflammation/drug therapy , Receptors, Complement/drug effects , Animals , Humans , Ligands , Neoplasms/drug therapy , Neoplasms/physiopathology , Receptors, Complement/chemistry , Receptors, Complement/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...