Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Environ Microbiol Rep ; 16(3): e13260, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38838099

ABSTRACT

As part of ongoing efforts to discover novel polyhydroxyalkanoate-producing bacterial species, we embarked on characterizing the thermotolerant species, Paracoccus kondratievae, for biopolymer synthesis. Using traditional chemical and thermal characterization techniques, we found that P. kondratievae accumulates poly(3-hydroxybutyrate) (PHB), reaching up to 46.8% of the cell's dry weight after a 24-h incubation at 42°C. Although P. kondratievae is phylogenetically related to the prototypical polyhydroxyalkanoate producer, Paracoccus denitrificans, we observed significant differences in the PHB production dynamics between these two Paracoccus species. Notably, P. kondratievae can grow and produce PHB at elevated temperatures ranging from 42 to 47°C. Furthermore, P. kondratievae reaches its peak PHB content during the early stationary growth phase, specifically after 24 h of growth in a flask culture. This is then followed by a decline in the later stages of the stationary growth phase. The depolymerization observed in this growth phase is facilitated by the abundant presence of the PhaZ depolymerase enzyme associated with PHB granules. We observed the highest PHB levels when the cells were cultivated in a medium with glycerol as the sole carbon source and a carbon-to-nitrogen ratio of 10. Finally, we found that PHB production is induced as an osmotic stress response, similar to other polyhydroxyalkanoate-producing species.


Subject(s)
Hydroxybutyrates , Paracoccus , Polyesters , Hydroxybutyrates/metabolism , Polyesters/metabolism , Paracoccus/metabolism , Paracoccus/growth & development , Paracoccus/genetics , Hot Temperature , Temperature , Phylogeny , Polyhydroxybutyrates
2.
J Fungi (Basel) ; 10(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38921357

ABSTRACT

The genome of Trametes versicolor encodes multiple laccase isozymes, the expression of which is responsive to various conditions. Here, we set out to investigate the potential of orange peel extract as an inducer of laccase production in this white-rot fungus, in comparison to the previously identified inducing chemical compound, veratryl alcohol. For four geographically distinct T. versicolor strains, a positive correlation has been observed between their oxidative activity and incubation time in liquid cultures. The addition of 20% orange peel extract or 5 mM veratryl alcohol caused a rapid increase in the oxidative potential of T. versicolor M99 after 24 h, with a more pronounced effect observed for the orange peel extract. To elucidate the underlying molecular mechanisms of the induced laccase activity, a transcriptional gene expression analysis was performed for the seven individual laccase genes in T. versicolor, revealing the upregulation of several laccase genes in response to the addition of each inducer. Notably, the gene encoding TvLac5 demonstrated a substantial upregulation in response to the addition of 20% orange peel extract, likely contributing to the observed increase in its oxidative potential. In conclusion, our results demonstrate that orange peels are a promising agro-industrial side stream for implementation as inducing agents in large-scale laccase production with T. versicolor.

3.
Mol Microbiol ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567765

ABSTRACT

Organization of archaeal chromatin combines bacterial, eukaryotic, and unique characteristics. Many archaeal lineages harbor a wide diversity of small and highly expressed nucleoid-associated proteins, which are involved in DNA structuring. In Sulfolobales, representing model organisms within the Crenarchaeota, Sul7d, Cren7, Sul10a, and Sul12a are well-characterized nucleoid-associated proteins. Here, we combine evidence that the Lrs14 family of DNA binders is part of the repertoire of nucleoid-associated proteins in Sulfolobales. Lrs14-encoding genes are widespread within genomes of different members of the Sulfolobales, typically encoded as four to nine homologs per genome. The Lrs14 proteins harbor a winged helix-turn-helix DNA-binding domain and are typified by a coiled-coil dimerization. They are characterized by distinct sequence- and structure-based features, including redox-sensitive motifs and residues targeted for posttranslational modification, allowing a further classification of the family into five conserved clusters. Lrs14-like proteins have unique DNA-organizing properties. By binding to the DNA nonsequence specifically and in a highly cooperative manner, with a slight preference for AT-rich promoter regions, they introduce DNA kinks and are able to affect transcription of adjacent transcription units either positively or negatively. Genes encoding Lrs14-type proteins display considerable differential expression themselves in response to various stress conditions, with certain homologs being specific to a particular stressor. Taken together, we postulate that members of the Lrs14 family can be considered nucleoid-associated proteins in Sulfolobales, combining a DNA-structuring role with a global gene expression role in response to stress conditions.

4.
Int J Biol Macromol ; 264(Pt 1): 130550, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38432267

ABSTRACT

A novel endo-1,4-ß-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized ß-xylosidase AmßXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmßXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmßXyl among the most promising biocatalysts for the saccharification of agricultural waste.


Subject(s)
Alicyclobacillus , Endo-1,4-beta Xylanases , Polysaccharides , Xylans , Xylosidases , Endo-1,4-beta Xylanases/chemistry , Xylans/chemistry , Hydrolysis , Hydrogen-Ion Concentration
5.
Glob Chall ; 8(1): 2300160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223894

ABSTRACT

Concrete, a widely used building material, often suffers from cracks that lead to corrosion and degradation. A promising solution to enhance its durability is the use of fungi as self-healing agents, specifically by harnessing their ability to promote calcium carbonate (CaCO3) precipitation on their cell walls. However, the ideal conditions for CaCO3 precipitation by the filamentous fungal species Trichoderma reesei are still unclear. In this study, the biomineralization properties of T. reesei in liquid media are investigated. Two different calcium sources, calcium chloride (CaCl2) and calcium lactate are tested, at varying concentrations and in the presence of different nutritional sources that support growth of T. reesei. This study also explores the effects on fungal growth upon adding cement to the medium. Calcium lactate promotes greater fungal biomass production, although less crystals are formed as compared to samples with CaCl2. An increasing calcium concentration positively influences fungal growth and precipitation, but this effect is hindered upon the addition of cement. The highest amounts of biomass and calcium carbonate precipitation are achieved with potato dextrose broth as a nutritional source. By identifying the optimal conditions for CaCO3 precipitation by T. reesei, this study highlights its potential as a self-healing agent in concrete.

6.
Front Bioeng Biotechnol ; 11: 1204861, 2023.
Article in English | MEDLINE | ID: mdl-37609120

ABSTRACT

Leathery mycelium materials, made from the vegetative part of filamentous fungi, have garnered significant interest in recent years due to their great potential of providing environmentally sustainable alternatives to animal- and plastic-based leathers. In this systematic patent review, we provide an in-depth overview of the fabrication methods for mycelium materials as leather substitutes recently described in patents. This overview includes strategies for fungal biomass generation and industrial developments in the sector. We discuss the use of various fungal species, plasticizers, crosslinking agents, and post-processing techniques, thereby highlighting potential gaps in scientific knowledge and identifying opportunities, challenges, and concerns in the field. Our analysis suggests that mycelium materials have significant potential for commercialization, with a growing number of companies betting on this new class of biomaterials. However, we also reveal the need for further scientific research to fully understand the properties of these materials and to unlock potential applications. Overall, this patent review delineates the current state of the art in leathery mycelium materials.

7.
mBio ; 14(5): e0359322, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37642423

ABSTRACT

IMPORTANCE: Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.


Subject(s)
Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/metabolism , Temperature , Heat-Shock Response
8.
Microbiologyopen ; 12(3): e1356, 2023 06.
Article in English | MEDLINE | ID: mdl-37379425

ABSTRACT

The leucine-responsive regulatory protein (Lrp) family of transcriptional regulators is widespread among prokaryotes and especially well-represented in archaea. It harbors members with diverse functional mechanisms and physiological roles, often linked to the regulation of amino acid metabolism. BarR is an Lrp-type regulator that is conserved in thermoacidophilic Thermoprotei belonging to the order Sulfolobales and is responsive to the non-proteinogenic amino acid ß-alanine. In this work, we unravel molecular mechanisms of the Acidianus hospitalis BarR homolog, Ah-BarR. Using a heterologous reporter gene system in Escherichia coli, we demonstrate that Ah-BarR is a dual-function transcription regulator that is capable of repressing transcription of its own gene and activating transcription of an aminotransferase gene, which is divergently transcribed from a common intergenic region. Atomic force microscopy (AFM) visualization reveals a conformation in which the intergenic region appears wrapped around an octameric Ah-BarR protein. ß-alanine causes small conformational changes without affecting the oligomeric state of the protein, resulting in a relief of regulation while the regulator remains bound to the DNA. This regulatory and ligand response is different from the orthologous regulators in Sulfolobus acidocaldarius and Sulfurisphaera tokodaii, which is possibly explained by a distinct binding site organization and/or by the presence of an additional C-terminal tail in Ah-BarR. By performing site-directed mutagenesis, this tail is shown to be involved in ligand-binding response.


Subject(s)
Acidianus , Escherichia coli Proteins , Transcription Factors/metabolism , Acidianus/genetics , Acidianus/metabolism , Alanine/metabolism , Ligands , Leucine-Responsive Regulatory Protein/genetics , Leucine-Responsive Regulatory Protein/metabolism , beta-Alanine , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , DNA, Intergenic , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Transcription, Genetic
9.
Viruses ; 15(5)2023 05 22.
Article in English | MEDLINE | ID: mdl-37243298

ABSTRACT

The Belgian Society for Viruses of Microbes (BSVoM) was founded on 9 June 2022 to capture and enhance the collaborative spirit among the expanding community of microbial virus researchers in Belgium. The sixteen founders are affiliated to fourteen different research entities across academia, industry and government. Its inaugural symposium was held on 23 September 2022 in the Thermotechnical Institute at KU Leuven. The meeting program covered three thematic sessions launched by international keynote speakers: (1) virus-host interactions, (2) viral ecology, evolution and diversity and (3) present and future applications. During the one-day symposium, four invited keynote lectures, ten selected talks and eight student pitches were given along with 41 presented posters. The meeting hosted 155 participants from twelve countries.


Subject(s)
Host Microbial Interactions , Viruses , Humans , Belgium
10.
MicroPubl Biol ; 20232023.
Article in English | MEDLINE | ID: mdl-37223428

ABSTRACT

Fungi-mediated self-healing concrete is a novel approach that promotes the precipitation of calcium carbonate (CaCO 3 ) on fungal hyphae to heal the cracks in concrete. In this study, we set out to explore the potential of fungal species isolated from a limestone cave by investigating their ability to precipitate CaCO 3 and to survive and grow in conditions relevant to concrete. Isolated strains belonging to the genera Botryotrichum sp. , Trichoderma sp. and Mortierella sp. proved to be promising candidates for fungi-mediated self-healing concrete attributed to their growth properties and CaCO 3 precipitation capabilities in the presence of cement.

11.
Nucleic Acids Res ; 51(7): 3420-3435, 2023 04 24.
Article in English | MEDLINE | ID: mdl-36864742

ABSTRACT

Obg is a widely conserved and essential GTPase in bacteria, which plays a central role in a large range of important cellular processes, such as ribosome biogenesis, DNA replication, cell division and bacterial persistence. Nevertheless, the exact function of Obg in these processes and the interactions it makes within the associated pathways remain largely unknown. Here, we identify the DNA-binding TrpD2 protein YbiB as an interactor of the Escherichia coli Obg (ObgE). We show that both proteins interact with high affinity in a peculiar biphasic fashion, and pinpoint the intrinsically disordered and highly negatively charged C-terminal domain of ObgE as a main driver for this interaction. Molecular docking and X-ray crystallography, together with site-directed mutagenesis, are used to map the binding site of this ObgE C-terminal domain within a highly positively charged groove on the surface of the YbiB homodimer. Correspondingly, ObgE efficiently inhibits the binding of DNA to YbiB, indicating that ObgE competes with DNA for binding in the positive clefts of YbiB. This study thus forms an important step for the further elucidation of the interactome and cellular role of the essential bacterial protein Obg.


Subject(s)
Escherichia coli Proteins , Monomeric GTP-Binding Proteins , Escherichia coli Proteins/metabolism , Monomeric GTP-Binding Proteins/genetics , Molecular Docking Simulation , Escherichia coli/genetics , Escherichia coli/metabolism , Bacterial Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/metabolism
12.
Microorganisms ; 10(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296332

ABSTRACT

Polyhydroxyalkanoate (PHA), a biodegradable and plastic-like biopolymer, has been receiving research and industrial attention due to severe plastic pollution, resource depletion, and global waste issues. This has spurred the isolation and characterisation of novel PHA-producing strains through cultivation and non-cultivation approaches, with a particular interest in genes encoding PHA synthesis pathways. Since sea sponges and sediment are marine benthic habitats known to be rich in microbial diversity, sponge tissues (Xestospongia muta and Aaptos aaptos) and sediment samples were collected in this study from Redang and Bidong islands located in the Malaysian Coral Triangle region. PHA synthase (phaC) genes were identified from sediment-associated bacterial strains using a cultivation approach and from sponge-associated bacterial metagenomes using a non-cultivation approach. In addition, phylogenetic diversity profiling was performed for the sponge-associated bacterial community using 16S ribosomal ribonucleic acid (16S rRNA) amplicon sequencing to screen for the potential presence of PHA-producer taxa. A total of three phaC genes from the bacterial metagenome of Aaptos and three phaC genes from sediment isolates (Sphingobacterium mizutaii UMTKB-6, Alcaligenes faecalis UMTKB-7, Acinetobacter calcoaceticus UMTKB-8) were identified. Produced PHA polymers were shown to be composed of 5C to nC monomers, with previously unreported PHA-producing ability of the S. mizutaii strain, as well as a 3-hydroxyvalerate-synthesising ability without precursor addition by the A. calcoaceticus strain.

13.
Methods Mol Biol ; 2516: 81-102, 2022.
Article in English | MEDLINE | ID: mdl-35922623

ABSTRACT

Archaeal transcription and its regulation are characterized by a mosaic of eukaryotic and bacterial features. Molecular analysis of the functioning of the archaeal RNA polymerase, basal transcription factors, and specific promoter-containing DNA templates allows to unravel the mechanisms of transcription regulation in archaea. In vitro transcription is a technique that allows the study of this process in a simplified and controlled environment less complex than the archaeal cell. In this chapter, we present an in vitro transcription methodology for the study of transcription in Sulfolobales. It is described how to purify the RNA polymerase and the basal transcription factors TATA-binding protein and transcription factor B of Saccharolobus solfataricus and how to perform in vitro transcription reactions and transcript detection. Application of this protocol for other archaeal species could require minor modifications to protein overexpression and purification conditions.


Subject(s)
Archaea , Archaeal Proteins , Archaea/genetics , Archaea/metabolism , Archaeal Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Sulfolobales/genetics , Sulfolobales/metabolism , Transcription Factors/metabolism , Transcription, Genetic
14.
Methods Mol Biol ; 2516: 259-290, 2022.
Article in English | MEDLINE | ID: mdl-35922631

ABSTRACT

The structure of an RNA molecule is often critical for its correct functioning, post-transcriptional regulation, and/or translation. Predicting RNA secondary structures with in silico tools is relatively straightforward with the large array of software and webservers available. However, for long RNAs and RNA at high temperatures, in silico predictions are less accurate and require experimental validation. To this end, a variety of structural probing reagents are commonly used, both for in vitro and in vivo mapping of RNA structure. Selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) experiments make use of a nonbase-specific modifying reagent, acylating all conformationally flexible (mainly single-stranded or unpaired) nucleotides and have been employed both for in vitro and in vivo modification of RNA. Here, we describe a protocol for an in vitro SHAPE experiment, starting from in vitro transcribed RNA using a T7 polymerase system. This RNA is folded and subsequently modified in vitro with the SHAPE-reagent N-methyl isatoic anhydride (NMIA). Primer extension employing a radioactive 32P-labeled primer that binds the RNA downstream of the structure of interest will generate cDNA until the reverse transcriptase enzyme is halted by the introduced SHAPE modifications. Denaturing acrylamide gel electrophoresis of the pool of 32P-labeled cDNAs and the corresponding sequencing ladders, followed by autoradiography, will expose these stops in reverse transcription (RT) and will therefore enable to identify single-stranded nucleotides in the RNA of interest. These RT stops and NMIA-modification efficiencies can be quantified with ImageJ software and can be used to validate or increase the accuracy of RNA secondary structure predictions.


Subject(s)
RNA , Software , Acylation , Nucleic Acid Conformation , Nucleotides/metabolism , RNA/chemistry , RNA-Directed DNA Polymerase/genetics , Sequence Analysis, RNA
15.
Biomimetics (Basel) ; 7(2)2022 May 05.
Article in English | MEDLINE | ID: mdl-35645184

ABSTRACT

Biological materials that are created by growing mycelium-forming fungal microorganisms on natural fibers can form a solution to environmental pollution and scarcity of natural resources. Recent studies on the hybridization of mycelium materials with glass improved fire performance; however, the effect of inorganic particles on growth performance and mechanical properties was not previously investigated. Yet, due to the wide variety of reinforcement particles, mycelium nanocomposites can potentially be designed for specific functions and applications, such as fire resistance and mechanical improvement. The objectives of this paper are to first determine whether mycelium materials reinforced with montmorillonite nanoclay can be produced given its inorganic nature, and then to study the influence of these nanoparticles on material properties. Nanoclay-mycelium materials are evaluated in terms of morphological, chemical, and mechanical properties. The first steps are taken in unravelling challenges that exist in combining myco-fabrication with nanomaterials. Results indicate that nanoclay causes a decreased growth rate, although the clay particles are able to penetrate into the fibers' cell-wall structure. The FTIR study demonstrates that T. versicolor has more difficulty accessing and decaying the hemicellulose and lignin when the amount of nanoclay increases. Moreover, the addition of nanoclay results in low mechanical properties. While nanoclay enhances the properties of polymer composites, the hybridization with mycelium composites was not successful.

16.
Biomolecules ; 12(4)2022 03 30.
Article in English | MEDLINE | ID: mdl-35454113

ABSTRACT

In archaeal microorganisms, the compaction and organization of the chromosome into a dynamic but condensed structure is mediated by diverse chromatin-organizing proteins in a lineage-specific manner. While many archaea employ eukaryotic-type histones for nucleoid organization, this is not the case for the crenarchaeal model species Sulfolobus acidocaldarius and related species in Sulfolobales, in which the organization appears to be mostly reliant on the action of small basic DNA-binding proteins. There is still a lack of a full understanding of the involved proteins and their functioning. Here, a combination of in vitro and in vivo methodologies is used to study the DNA-binding properties of Sul12a, an uncharacterized small basic protein conserved in several Sulfolobales species displaying a winged helix-turn-helix structural motif and annotated as a transcription factor. Genome-wide chromatin immunoprecipitation and target-specific electrophoretic mobility shift assays demonstrate that Sul12a of S. acidocaldarius interacts with DNA in a non-sequence specific manner, while atomic force microscopy imaging of Sul12a-DNA complexes indicate that the protein induces structural effects on the DNA template. Based on these results, and a contrario to its initial annotation, it can be concluded that Sul12a is a novel chromatin-organizing protein.


Subject(s)
Archaeal Proteins , Sulfolobus acidocaldarius , Archaea/genetics , Archaeal Proteins/metabolism , Chromatin/metabolism , Chromatin Immunoprecipitation , DNA/metabolism , DNA-Binding Proteins/metabolism , Sulfolobales/genetics , Sulfolobus acidocaldarius/genetics , Sulfolobus acidocaldarius/metabolism
17.
Gene ; 809: 146010, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34688814

ABSTRACT

Synthetic biology requires well-characterized biological parts that can be combined into functional modules. One type of biological parts are transcriptional regulators and their cognate operator elements, which enable to either generate an input-specific response or are used as actuator modules. A range of regulators has already been characterized and used for orthogonal gene expression engineering, however, previous efforts have mostly focused on bacterial regulators. This work aims to design and explore the use of an archaeal TetR family regulator, FadRSa from Sulfolobus acidocaldarius, in a bacterial system, namely Escherichia coli. This is a challenging objective given the fundamental difference between the bacterial and archaeal transcription machinery and the lack of a native TetR-like FadR regulatory system in E. coli. The synthetic σ70-dependent bacterial promoter proD was used as a starting point to design hybrid bacterial/archaeal promoter/operator regions, in combination with the mKate2 fluorescent reporter enabling a readout. Four variations of proD containing FadRSa binding sites were constructed and characterized. While expressional activity of the modified promoter proD was found to be severely diminished for two of the constructs, constructs in which the binding site was introduced adjacent to the -35 promoter element still displayed sufficient basal transcriptional activity and showed up to 7-fold repression upon expression of FadRSa. Addition of acyl-CoA has been shown to disrupt FadRSa binding to the DNA in vitro. However, extracellular concentrations of up to 2 mM dodecanoate, subsequently converted to acyl-CoA by the cell, did not have a significant effect on repression in the bacterial system. This work demonstrates that archaeal transcription regulators can be used to generate actuator elements for use in E. coli, although the lack of ligand response underscores the challenge of maintaining biological function when transferring parts to a phylogenetically divergent host.


Subject(s)
Archaeal Proteins/genetics , Escherichia coli/genetics , Genetic Engineering/methods , Transcription Factors/genetics , Acyl Coenzyme A/genetics , Acyl Coenzyme A/metabolism , Bacterial Proteins/genetics , Binding Sites , Escherichia coli/drug effects , Escherichia coli/metabolism , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , Isopropyl Thiogalactoside/pharmacology , Laurates/pharmacology , Microorganisms, Genetically-Modified , Operator Regions, Genetic , Promoter Regions, Genetic , Repressor Proteins/genetics , Sulfolobus acidocaldarius/genetics
18.
Fungal Biol Biotechnol ; 8(1): 20, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930476

ABSTRACT

In the context of the ongoing transition from a linear to a circular economy, ecologically friendly renewable solutions are put in place. Filamentous fungi can be grown on various organic feedstocks and functionalized into a range of diverse material types which are biobased and thus more sustainable in terms of their production, use and recycling. Pure mycelium materials, consisting only of mycelial biomass, can adopt versatile properties and appear promising as a substitute for current petrochemically produced polymeric materials or, in the case of myco-leather, as a substitute for animal-based leather. In recent years, a handful of private companies have been innovating to bring products based on pure mycelium materials to the market while scientific interest in these promising biomaterials is now starting to gain momentum. In this primer, we introduce pure mycelium materials, frame different production methods, review existing and potential future applications, thereby offering a vision on future advances for this emerging fungi-based technology.

19.
Fungal Biol Biotechnol ; 8(1): 18, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34863310

ABSTRACT

BACKGROUND: While mycelium is considered a promising alternative for fossil-based resins in lignocellulosic materials, the mechanical properties of mycelium composite materials remain suboptimal, among other reasons due to the weak internal bonds between the hyphae and the natural fibres. A solution could be provided by the hybridisation of mycelium materials with organic additives. More specifically, bacterial cellulose seems to be a promising additive that could result in reinforcing mycelium composites; however, this strategy is underreported in scientific literature. RESULTS: In this study, we set out to investigate the mechanical properties of mycelium composites, produced with the white-rot fungus Trametes versicolor, and supplemented with bacterial cellulose as an organic additive. A methodological framework is developed for the facile production of bacterial cellulose and subsequent fabrication of mycelium composite particle boards based on a hybrid substrate consisting of bacterial cellulose and hemp in combination with a heat-pressing approach. We found that, upon adding bacterial cellulose, the internal bond of the composite particle boards significantly improved. CONCLUSIONS: The addition of bacterial cellulose to mycelium composite materials not only results in a strengthening of internal bonding of mycelium material, but also renders tuneable mechanical properties to the material. As such, this study contributes to the ongoing development of fully biological hybrid materials with performant mechanical characteristics.

20.
Fungal Biol Biotechnol ; 8(1): 16, 2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34794517

ABSTRACT

Concrete is the most used construction material worldwide due to its abundant availability and inherent ease of manufacturing and application. However, the material bears several drawbacks such as the high susceptibility for crack formation, leading to reinforcement corrosion and structural degradation. Extensive research has therefore been performed on the use of microorganisms for biologically mediated self-healing of concrete by means of CaCO3 precipitation. Recently, filamentous fungi have been recognized as high-potential microorganisms for this application as their hyphae grow in an interwoven three-dimensional network which serves as nucleation site for CaCO3 precipitation to heal the crack. This potential is corroborated by the current state of the art on fungi-mediated self-healing concrete, which is not yet extensive but valuable to direct further research. In this review, we aim to broaden the perspectives on the use of fungi for concrete self-healing applications by first summarizing the major progress made in the field of microbial self-healing of concrete and then discussing pioneering work that has been done with fungi. Starting from insights and hypotheses on the types and principles of biomineralization that occur during microbial self-healing, novel potentially promising candidate species are proposed based on their abilities to promote CaCO3 formation or to survive in extreme conditions that are relevant for concrete. Additionally, an overview will be provided on the challenges, knowledge gaps and future perspectives in the field of fungi-mediated self-healing concrete.

SELECTION OF CITATIONS
SEARCH DETAIL