Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659777

ABSTRACT

Within multicellular living systems, cells coordinate their positions with spatiotemporal accuracy to form various structures, setting the clock to control developmental processes and trigger maturation. These arrangements can be regulated by tissue topology, biochemical cues, as well as mechanical perturbations. However, the fundamental rules of how local cell packing order is regulated in forming three-dimensional (3D) multicellular architectures remain unclear. Furthermore, how cellular coordination evolves during developmental processes, and whether this cell patterning behavior is indicative of more complex biological functions, is largely unknown. Here, using human lung alveolospheres as a model system, by combining experiments and numerical simulations, we find that, surprisingly, cell packing behavior on alveolospheres resembles hard-disk packing but with increased randomness; the stiffer cell nuclei act as the hard disks surrounded by deformable cell bodies. Interestingly, we observe the emergence of topological packing order during alveolosphere growth, as a result of increasing nucleus-to-cell size ratio. Specifically, we find more hexagon-concentrated cellular packing with increasing bond orientational order, indicating a topological gas-to-liquid transition. Additionally, by osmotically changing the compactness of cells on alveolospheres, we observe that the variations in packing order align with the change of nucleus-to-cell size ratio. Together, our findings reveal the underlying rules of cell coordination and topological phases during human lung alveolosphere growth. These static packing characteristics are consistent with cell dynamics, together suggesting that better cellular packing stabilizes local cell neighborhoods and may regulate more complex biological functions such as organ development and cellular maturation.

2.
PLoS Comput Biol ; 18(2): e1009400, 2022 02.
Article in English | MEDLINE | ID: mdl-35180215

ABSTRACT

In eukaryotes, the cell volume is observed to be strongly correlated with the nuclear volume. The slope of this correlation depends on the cell type, growth condition, and the physical environment of the cell. We develop a computational model of cell growth and proteome increase, incorporating the kinetics of amino acid import, protein/ribosome synthesis and degradation, and active transport of proteins between the cytoplasm and the nucleoplasm. We also include a simple model of ribosome biogenesis and assembly. Results show that the cell volume is tightly correlated with the nuclear volume, and the cytoplasm-nucleoplasm transport rates strongly influence the cell growth rate as well as the cell/nucleus volume ratio (C/N ratio). Ribosome assembly and the ratio of ribosomal proteins to mature ribosomes also influence the cell volume and the cell growth rate. We find that in order to regulate the cell growth rate and the cell/nucleus volume ratio, the cell must optimally control groups of kinetic and transport parameters together, which could explain the quantitative roles of canonical growth pathways. Finally, although not explicitly demonstrated in this work, we point out that it is possible to construct a detailed proteome distribution using our model and RNAseq data, provided that a quantitative cell division mechanism is known.


Subject(s)
Eukaryotic Cells , Proteome , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Eukaryotic Cells/metabolism , Proteome/metabolism , RNA, Ribosomal , Ribosomal Proteins/metabolism , Ribosomes/metabolism
3.
Opt Express ; 29(21): 34205-34219, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34809216

ABSTRACT

Hyperspectral stimulated Raman scattering (SRS) microscopy is a label-free technique for biomedical and mineralogical imaging which can suffer from low signal-to-noise ratios. Here we demonstrate the use of an unsupervised deep learning neural network for rapid and automatic denoising of SRS images: UHRED (Unsupervised Hyperspectral Resolution Enhancement and Denoising). UHRED is capable of "one-shot" learning; only one hyperspectral image is needed, with no requirements for training on previously labelled datasets or images. Furthermore, by applying a k-means clustering algorithm to the processed data, we demonstrate automatic, unsupervised image segmentation, yielding, without prior knowledge of the sample, intuitive chemical species maps, as shown here for a lithium ore sample.

4.
iScience ; 24(11): 103252, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34755092

ABSTRACT

It is well established that the early malignant tumor invades surrounding extracellular matrix (ECM) in a manner that depends upon material properties of constituent cells, surrounding ECM, and their interactions. Recent studies have established the capacity of the invading tumor spheroids to evolve into coexistent solid-like, fluid-like, and gas-like phases. Using breast cancer cell lines invading into engineered ECM, here we show that the spheroid interior develops spatial and temporal heterogeneities in material phase which, depending upon cell type and matrix density, ultimately result in a variety of phase separation patterns at the invasive front. Using a computational approach, we further show that these patterns are captured by a novel jamming phase diagram. We suggest that non-equilibrium phase separation based upon jamming and unjamming transitions may provide a unifying physical picture to describe cellular migratory dynamics within, and invasion from, a tumor.

5.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Article in English | MEDLINE | ID: mdl-34716269

ABSTRACT

Cells cooperate as groups to achieve structure and function at the tissue level, during which specific material characteristics emerge. Analogous to phase transitions in classical physics, transformations in the material characteristics of multicellular assemblies are essential for a variety of vital processes including morphogenesis, wound healing, and cancer. In this work, we develop configurational fingerprints of particulate and multicellular assemblies and extract volumetric and shear order parameters based on this fingerprint to quantify the system disorder. Theoretically, these two parameters form a complete and unique pair of signatures for the structural disorder of a multicellular system. The evolution of these two order parameters offers a robust and experimentally accessible way to map the phase transitions in expanding cell monolayers and during embryogenesis and invasion of epithelial spheroids.


Subject(s)
Biophysical Phenomena/physiology , Image Processing, Computer-Assisted/methods , Organ Specificity/physiology , Phase Transition , Animals , Cell Cycle , Cell Movement , Cell Proliferation , Epithelial Cells/cytology , Humans , Morphogenesis , Neoplasms , Spheroids, Cellular/cytology , Wound Healing
6.
Cells Dev ; 168: 203727, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34363993

ABSTRACT

The last decade has seen a surge of evidence supporting the existence of the transition of the multicellular tissue from a collective material phase that is regarded as being jammed to a collective material phase that is regarded as being unjammed. The jammed phase is solid-like and effectively 'frozen', and therefore is associated with tissue homeostasis, rigidity, and mechanical stability. The unjammed phase, by contrast, is fluid-like and effectively 'melted', and therefore is associated with mechanical fluidity, plasticity and malleability that are required in dynamic multicellular processes that sculpt organ microstructure. Such multicellular sculpturing, for example, occurs during embryogenesis, growth and remodeling. Although unjamming and jamming events in the multicellular collective are reminiscent of those that occur in the inert granular collective, such as grain in a hopper that can flow or clog, the analogy is instructive but limited, and the implications for cell biology remain unclear. Here we ask, are the cellular jamming transition and its inverse --the unjamming transition-- mere epiphenomena? That is, are they dispensable downstream events that accompany but neither cause nor quench these core multicellular processes? Drawing from selected examples in developmental biology, here we suggest the hypothesis that, to the contrary, the graded departure from a jammed phase enables controlled degrees of malleability as might be required in developmental dynamics. We further suggest that the coordinated approach to a jammed phase progressively slows those dynamics and ultimately enables long-term mechanical stability as might be required in the mature homeostatic multicellular tissue.

7.
Opt Express ; 28(24): 35997-36008, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379704

ABSTRACT

Hyperspectral stimulated Raman scattering (SRS) microscopy is a powerful label-free, chemical-specific technique for biomedical and mineralogical imaging. Usually, broad and rapid spectral scanning across Raman bands is required for species identification. In many implementations, however, the Raman spectral scan speed is limited by the need to tune source laser wavelengths. Alternatively, a broadband supercontinuum source can be considered. In SRS microscopy, however, source noise is critically important, precluding many spectral broadening schemes. Here we show that a supercontinuum light source based on all normal dispersion (ANDi) fibres provides a stable broadband output with very low incremental source noise. We characterized the noise power spectral density of the ANDi fibre output and demonstrated its use in hyperspectral SRS microscopy applications. This confirms the viability and ease of implementation of ANDi fibre sources for broadband SRS imaging.

8.
Nat Phys ; 16(1): 101-108, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32905405

ABSTRACT

Sculpting of structure and function of three-dimensional multicellular tissues depend critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events, and their disruption in disease, remain poorly understood. Using a multicellular mammary cancer organoid model, here we map in three dimensions the spatial and temporal evolution of positions, motions, and physical characteristics of individual cells. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, suppression of which delays transition to an invasive phenotype. Together, these findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.

9.
Opt Express ; 28(8): 11946-11955, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403695

ABSTRACT

The microscopic arrangement of different minerals in ores is of high interest for mine planning, mineral processing and extractive metallurgy. Many economically important, naturally occurring minerals are highly absorbing semiconductors. To characterize these materials, we have implemented pump-probe laser scanning microscopy (LSM) in a two-lens reflective configuration that offers efficient collection of signal light by using a combination of galvanometer and sample stage scanning. We show that the short-time (∼10 ps) pump-probe response of a material allows us to distinguish economically important sulfide minerals.

10.
Biochem Biophys Res Commun ; 521(3): 706-715, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31699371

ABSTRACT

Each cell comprising an intact, healthy, confluent epithelial layer ordinarily remains sedentary, firmly adherent to and caged by its neighbors, and thus defines an elemental constituent of a solid-like cellular collective [1,2]. After malignant transformation, however, the cellular collective can become fluid-like and migratory, as evidenced by collective motions that arise in characteristic swirls, strands, ducts, sheets, or clusters [3,4]. To transition from a solid-like to a fluid-like phase and thereafter to migrate collectively, it has been recently argued that cells comprising the disordered but confluent epithelial collective can undergo changes of cell shape so as to overcome geometric constraints attributable to the newly discovered phenomenon of cell jamming and the associated unjamming transition (UJT) [1,2,5-9]. Relevance of the jamming concept to carcinoma cells lines of graded degrees of invasive potential has never been investigated, however. Using classical in vitro cultures of six breast cancer model systems, here we investigate structural and dynamical signatures of cell jamming, and the relationship between them [1,2,10,11]. In order of roughly increasing invasive potential as previously reported, model systems examined included MCF10A, MCF10A.Vector; MCF10A.14-3-3ζ; MCF10.ErbB2, MCF10AT; and MCF10CA1a [12-15]. Migratory speed depended on the particular cell line. Unsurprisingly, for example, the MCF10CA1a cell line exhibited much faster migratory speed relative to the others. But unexpectedly, across different cell lines higher speeds were associated with enhanced size of cooperative cell packs in a manner reminiscent of a peloton [9]. Nevertheless, within each of the cell lines evaluated, cell shape and shape variability from cell-to-cell conformed with predicted structural signatures of cell layer unjamming [1]. Moreover, both structure and migratory dynamics were compatible with previous theoretical descriptions of the cell jamming mechanism [2,10,11,16,17]. As such, these findings demonstrate the richness of the cell jamming mechanism, which is now seen to apply across these cancer cell lines but remains poorly understood.


Subject(s)
Breast Neoplasms/pathology , Cell Movement , Neoplasm Invasiveness/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Shape , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Humans
11.
Sci Rep ; 8(1): 16917, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30446672

ABSTRACT

Multi-modal nonlinear optical (NLO) microscopy, including stimulated Raman scattering (SRS) and second harmonic generation (SHG), was used to directly image mineralogical features of economic ore and rock samples. In SRS/SHG imaging, ore samples generally require minimal preparation and may be rapidly imaged, even in their wet state. 3D structural details, at submicron resolution, are revealed tens of microns deep within samples. Standard mineral imaging based on scanning electron microscopy (SEM), with elemental analysis via energy dispersive X-Ray spectroscopy, was used to independently validate the mineral composition of the samples. Spatially-resolved SRS from dominant Raman-resonant bands precisely maps the locations of specific minerals contained within the samples. SHG imaging reveals locally non-centrosymmetric structures, such as quartz grains. Competing absorption and nonlinear scattering processes, however, can reduce contrast in SRS imaging. Importantly, the correlation between standard electron microscopy and multi-modal NLO optical microscopy shows that the latter offers rapid image contrast based on the mineral content of the sample.

12.
Nat Phys ; 14: 613-620, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30151030

ABSTRACT

As an injury heals, an embryo develops, or a carcinoma spreads, epithelial cells systematically change their shape. In each of these processes cell shape is studied extensively whereas variability of shape from cell-to-cell is regarded most often as biological noise. But where do cell shape and its variability come from? Here we report that cell shape and shape variability are mutually constrained through a relationship that is purely geometrical. That relationship is shown to govern processes as diverse as maturation of the pseudostratified bronchial epithelial layer cultured from non-asthmatic or asthmatic donors, and formation of the ventral furrow in the Drosophila embryo. Across these and other epithelial systems, shape variability collapses to a family of distributions that is common to all. That distribution, in turn, is accounted for by a mechanistic theory of cell-cell interaction showing that cell shape becomes progressively less elongated and less variable as the layer becomes progressively more jammed. These findings suggest a connection between jamming and geometry that spans living organisms and inert jammed systems, and thus transcends system details. Although molecular events are needed for any complete theory of cell shape and cell packing, observations point to the hypothesis that jamming behavior at larger scales of organization sets overriding geometrical constraints.

13.
Article in English | MEDLINE | ID: mdl-29092896

ABSTRACT

SUMMARYThe cytoskeleton is the major mechanical structure of the cell; it is a complex, dynamic biopolymer network comprising microtubules, actin, and intermediate filaments. Both the individual filaments and the entire network are not simple elastic solids but are instead highly nonlinear structures. Appreciating the mechanics of biopolymer networks is key to understanding the mechanics of cells. Here, we review the mechanical properties of cytoskeletal polymers and discuss the implications for the behavior of cells.


Subject(s)
Cells , Cytoskeleton/physiology , Animals , Biomechanical Phenomena , Biopolymers , Humans , Intermediate Filaments , Microtubules
14.
Proc Natl Acad Sci U S A ; 114(41): E8618-E8627, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28973866

ABSTRACT

Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology.


Subject(s)
Cell Differentiation , Cell Physiological Phenomena , Cell Size , Mesenchymal Stem Cells/physiology , Water/metabolism , Animals , Cell Lineage , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred BALB C
15.
Physiology (Bethesda) ; 32(4): 266-277, 2017 07.
Article in English | MEDLINE | ID: mdl-28615311

ABSTRACT

Cell culture has become an indispensable tool to help uncover fundamental biophysical and biomolecular mechanisms by which cells assemble into tissues and organs, how these tissues function, and how that function becomes disrupted in disease. Cell culture is now widely used in biomedical research, tissue engineering, regenerative medicine, and industrial practices. Although flat, two-dimensional (2D) cell culture has predominated, recent research has shifted toward culture using three-dimensional (3D) structures, and more realistic biochemical and biomechanical microenvironments. Nevertheless, in 3D cell culture, many challenges remain, including the tissue-tissue interface, the mechanical microenvironment, and the spatiotemporal distributions of oxygen, nutrients, and metabolic wastes. Here, we review 2D and 3D cell culture methods, discuss advantages and limitations of these techniques in modeling physiologically and pathologically relevant processes, and suggest directions for future research.


Subject(s)
Cell Culture Techniques/methods , Animals , Biomedical Research/methods , Cell Differentiation/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Extracellular Matrix/physiology , Humans , Tissue Engineering/methods
16.
Exp Cell Res ; 343(1): 54-59, 2016 04 10.
Article in English | MEDLINE | ID: mdl-26546401

ABSTRACT

As do all things in biology, cell mechanosensation, adhesion and migration begin at the scale of the molecule. Collections of molecules assemble to comprise microscale objects such as adhesions, organelles and cells. And collections of cells in turn assemble to comprise macroscale tissues. From the points of view of mechanism and causality, events at the molecular scale are seen most often as being the most upstream and, therefore, the most fundamental and the most important. In certain collective systems, by contrast, events at many scales of length conspire to make contributions of equal importance, and even interact directly and strongly across disparate scales. Here we highlight recent examples in cellular mechanosensing and collective cellular migration where physics at some scale bigger than the cell but smaller than the tissue - the mesoscale - becomes the missing link that is required to tie together findings that might otherwise seem counterintuitive or even unpredictable. These examples, taken together, establish that the phenotypes and the underlying physics of collective cellular migration are far richer than previously anticipated.


Subject(s)
Cell Adhesion , Cell Movement , Animals , Cadherins/metabolism , Humans , Pathology
17.
Integr Biol (Camb) ; 7(12): 1526-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26549557

ABSTRACT

Collective cell migration is ubiquitous in biology, from development to cancer; it occurs in complex systems comprised of heterogeneous cell types, signals and matrices, and requires large scale regulation in space and time. Understanding how cells achieve organized collective motility is crucial to addressing cellular and tissue function and disease progression. While current two-dimensional model systems recapitulate the dynamic properties of collective cell migration, quantitative three-dimensional equivalent model systems have proved elusive. To establish such a model system, we study cell collectives by tracking individuals within cell cohorts embedded in three dimensional collagen scaffolding. We develop a custom algorithm to quantify the temporal and spatial heterogeneity of motion in cell cohorts during motility events. In the absence of external driving agents, we show that these cohorts rotate in short bursts, <2 hours, and translate for up to 6 hours. We observe, track, and analyze three dimensional motion of cell cohorts composed of 3-31 cells, and pave a path toward understanding cell collectives in 3D as a complex emergent system.


Subject(s)
Cell Movement/physiology , Algorithms , Animals , Biomechanical Phenomena , Collagen , Dogs , Gels , Imaging, Three-Dimensional , Madin Darby Canine Kidney Cells , Models, Biological
18.
Adv Mater ; 27(35): 5132-40, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26259975

ABSTRACT

Soft, solvent-free poly(dimethylsiloxane) elastomers are fabricated by a one-step process via crosslinking bottlebrush polymers. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable low moduli from 1 to 100 kPa, below the lower limit of traditional elastomers; moreover, the solvent-free nature enables their negligible adhesiveness compared to commercially available silicone products of similar stiffness.


Subject(s)
Dimethylpolysiloxanes/chemistry , Drug Design , Elastomers/chemistry , Adhesiveness , Animals , Dimethylpolysiloxanes/pharmacology , Dogs , Elastic Modulus , Elastomers/pharmacology , Madin Darby Canine Kidney Cells , Materials Testing , Mice , NIH 3T3 Cells
19.
Nano Lett ; 15(7): 4737-44, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26065925

ABSTRACT

Recent development of liquid phase transmission electron microscopy (TEM) enables the study of specimens in wet ambient conditions within a liquid cell; however, direct structural observation of biological samples in their native solution using TEM is challenging since low-mass biomaterials embedded in a thick liquid layer of the host cell demonstrate low contrast. Furthermore, the integrity of delicate wet samples is easily compromised during typical sample preparation and TEM imaging. To overcome these limitations, we introduce a graphene liquid cell (GLC) using multilayer graphene sheets to reliably encapsulate and preserve biological samples in a liquid for TEM observation. We achieve nanometer scale spatial resolution with high contrast using low-dose TEM at room temperature, and we use the GLC to directly observe the structure of influenza viruses in their native buffer solution at room temperature. The GLC is further extended to investigate whole cells in wet conditions using TEM. We also demonstrate the potential of the GLC for correlative studies by TEM and fluorescence light microscopy imaging.


Subject(s)
Epithelial Cells/ultrastructure , Graphite/chemistry , Influenza A Virus, H3N2 Subtype/ultrastructure , Influenza, Human/virology , Microscopy, Electron, Transmission/methods , Animals , Cell Line , Dogs , Equipment Design , Humans , Madin Darby Canine Kidney Cells/ultrastructure , Microscopy, Electron, Transmission/instrumentation , Solutions/chemistry
20.
J Biophotonics ; 7(1-2): 49-58, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23242840

ABSTRACT

A simple scheme for multimodal coherent anti-Stokes Raman scattering (CARS) microscopy is based on the spectral focusing of ultrafast-oscillator-derived pump/probe light and synchronous photonic crystal fiber (PCF) fiber-generated broadband Stokes light. To date, such schemes allowed rapid hyperspectral imaging throughout the CH/OH high frequency region (2700-4000 cm(-1) ). Here we extend this approach to the middle (1640-3300 cm(-1) ) and fingerprint regions (850-1800 cm(-1) ) of the Raman spectrum. Our simple integrated approach to rapid hyperspectral CARS microscopy in the fingerprint region is demonstrated by applications to label-free multimodal imaging of cellulose and bulk bone, including use of the phosphate resonance at 960 cm(-1) .


Subject(s)
Microscopy/methods , Spectrum Analysis, Raman , Animals , Biocompatible Materials/chemistry , Bone Density , Cattle , Cellulose/chemistry , Collagen/metabolism , Nitrobenzenes/chemistry , Ribs/cytology , Ribs/metabolism , Ribs/physiology , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...