Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 5(12): 1211-1215, 2019 12.
Article in English | MEDLINE | ID: mdl-31819219

ABSTRACT

Orobanche cumana (sunflower broomrape) is an obligate parasitic plant that infects sunflower roots, causing yield losses. Here, by using a map-based cloning strategy, we identified HaOr7-a gene that confers resistance to O. cumana race F-which was found to encode a leucine-rich repeat receptor-like kinase. The complete HAOR7 protein is present in resistant lines of sunflower and prevents O. cumana from connecting to the vascular system of sunflower roots, whereas susceptible lines encode a truncated protein that lacks transmembrane and kinase domains.


Subject(s)
Helianthus/parasitology , Orobanche/enzymology , Plant Proteins/immunology , Protein Kinases/immunology , Disease Resistance , Helianthus/growth & development , Orobanche/immunology , Orobanche/metabolism , Plant Proteins/genetics , Protein Kinases/genetics
2.
Theor Appl Genet ; 132(11): 3063-3078, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31485698

ABSTRACT

KEY MESSAGE: The comparison of QTL detection performed on an elite panel and an (elite [Formula: see text] exotic) progeny shows that introducing exotic germplasm into breeding programs can bring new interesting allelic diversity. Selection of stable varieties producing the highest amount of extractable sugar per hectare (ha), resistant to diseases, and respecting environmental criteria is undoubtedly the main target for sugar beet breeding. As sodium, potassium, and [Formula: see text]-amino nitrogen in sugar beets are the impurities that have the biggest negative impact on white sugar extraction, it is interesting to reduce their concentration in further varieties. However, domestication history and strong selection pressures have affected the genetic diversity needed to achieve this goal. In this study, quantitative trait locus (QTL) detection was performed on two populations, an (elite [Formula: see text] exotic) sugar beet progeny and an elite panel, to find potentially new interesting regions brought by the exotic accession. The three traits linked with impurities content were studied. Some QTLs were detected in both populations, the majority in the elite panel because of most statistical power. Some of the QTLs were colocated and had favorable effect in the progeny since the exotic allele was linked with a decrease in the impurity content. A few number of favorable QTLs were detected in the progeny, only. Consequently, introgressing exotic genetic material into sugar beet breeding programs can allow the incorporation of new interesting alleles.


Subject(s)
Beta vulgaris/genetics , Plant Breeding , Quantitative Trait Loci , Sugars/chemistry , Alleles , Beta vulgaris/chemistry , Chromosome Mapping , Genotype , Models, Genetic , Nitrogen , Phenotype , Polymorphism, Single Nucleotide , Potassium , Sodium
3.
Front Plant Sci ; 8: 1633, 2017.
Article in English | MEDLINE | ID: mdl-28983306

ABSTRACT

Prediction of hybrid performance using incomplete factorial mating designs is widely used in breeding programs including different heterotic groups. Based on the general combining ability (GCA) of the parents, predictions are accurate only if the genetic variance resulting from the specific combining ability is small and both parents have phenotyped descendants. Genomic selection (GS) can predict performance using a model trained on both phenotyped and genotyped hybrids that do not necessarily include all hybrid parents. Therefore, GS could overcome the issue of unknown parent GCA. Here, we compared the accuracy of classical GCA-based and genomic predictions for oil content of sunflower seeds using several GS models. Our study involved 452 sunflower hybrids from an incomplete factorial design of 36 female and 36 male lines. Re-sequencing of parental lines allowed to identify 468,194 non-redundant SNPs and to infer the hybrid genotypes. Oil content was observed in a multi-environment trial (MET) over 3 years, leading to nine different environments. We compared GCA-based model to different GS models including female and male genomic kinships with the addition of the female-by-male interaction genomic kinship, the use of functional knowledge as SNPs in genes of oil metabolic pathways, and with epistasis modeling. When both parents have descendants in the training set, the predictive ability was high even for GCA-based prediction, with an average MET value of 0.782. GS performed slightly better (+0.2%). Neither the inclusion of the female-by-male interaction, nor functional knowledge of oil metabolism, nor epistasis modeling improved the GS accuracy. GS greatly improved predictive ability when one or both parents were untested in the training set, increasing GCA-based predictive ability by 10.4% from 0.575 to 0.635 in the MET. In this scenario, performing GS only considering SNPs in oil metabolic pathways did not improve whole genome GS prediction but increased GCA-based prediction ability by 6.4%. Our results show that GS is a major improvement to breeding efficiency compared to the classical GCA modeling when either one or both parents are not well-characterized. This finding could therefore accelerate breeding through reducing phenotyping efforts and more effectively targeting for the most promising crosses.

4.
Nature ; 546(7656): 148-152, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28538728

ABSTRACT

The domesticated sunflower, Helianthus annuus L., is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought. Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species. Here we report a high-quality reference for the sunflower genome (3.6 gigabases), together with extensive transcriptomic data from vegetative and floral organs. The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly. Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago. An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks. We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years. This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs.


Subject(s)
Evolution, Molecular , Flowers/genetics , Flowers/physiology , Genome, Plant/genetics , Helianthus/genetics , Helianthus/metabolism , Plant Oils/metabolism , Acclimatization/genetics , Gene Duplication/genetics , Gene Expression Regulation, Plant , Genetic Variation , Genomics , Helianthus/classification , Sequence Analysis, DNA , Stress, Physiological/genetics , Sunflower Oil , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...