Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Cell Stem Cell ; 31(4): 467-483.e6, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38537631

ABSTRACT

Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.


Subject(s)
Brain Injuries , Intestinal Perforation , Motor Disorders , Premature Birth , Infant , Female , Infant, Newborn , Humans , Animals , Mice , Infant, Premature , Intestinal Perforation/complications , Lateral Ventricles , Stem Cell Niche , Motor Disorders/complications , Brain Injuries/complications , Brain Injuries/diagnostic imaging
2.
Cell Stem Cell ; 30(8): 1054-1071.e8, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541211

ABSTRACT

White matter injuries (WMIs) are the leading cause of neurologic impairment in infants born premature. There are no treatment options available. The most common forms of WMIs in infants occur prior to the onset of normal myelination, making its pathophysiology distinctive, thus requiring a tailored approach to treatment. Neonates present a unique opportunity to repair WMIs due to a transient abundance of neural stem/progenitor cells (NSPCs) present in the germinal matrix with oligodendrogenic potential. We identified an endogenous oxysterol, 20-αHydroxycholesterol (20HC), in human maternal breast milk that induces oligodendrogenesis through a sonic hedgehog (shh), Gli-dependent mechanism. Following WMI in neonatal mice, injection of 20HC induced subventricular zone-derived oligodendrogenesis and improved myelination in the periventricular white matter, resulting in improved motor outcomes. Targeting the oligodendrogenic potential of postnatal NSPCs in neonates with WMIs may be further developed into a novel approach to mitigate this devastating complication of preterm birth.


Subject(s)
Brain Injuries , Premature Birth , White Matter , Female , Humans , Animals , Mice , Infant, Newborn , White Matter/metabolism , Milk, Human/metabolism , Hedgehog Proteins/metabolism , Cerebral Ventricles/metabolism , Oligodendroglia/physiology
3.
Sci Signal ; 10(500)2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29018170

ABSTRACT

Birth defects of the heart and face are common, and most have no known genetic cause, suggesting a role for environmental factors. Maternal fever during the first trimester is an environmental risk factor linked to these defects. Neural crest cells are precursor populations essential to the development of both at-risk tissues. We report that two heat-activated transient receptor potential (TRP) ion channels, TRPV1 and TRPV4, were present in neural crest cells during critical windows of heart and face development. TRPV1 antagonists protected against the development of hyperthermia-induced defects in chick embryos. Treatment with chemical agonists of TRPV1 or TRPV4 replicated hyperthermia-induced birth defects in chick and zebrafish embryos. To test whether transient TRPV channel permeability in neural crest cells was sufficient to induce these defects, we engineered iron-binding modifications to TRPV1 and TRPV4 that enabled remote and noninvasive activation of these channels in specific cellular locations and at specific developmental times in chick embryos with radio-frequency electromagnetic fields. Transient stimulation of radio frequency-controlled TRP channels in neural crest cells replicated fever-associated defects in developing chick embryos. Our data provide a previously undescribed mechanism for congenital defects, whereby hyperthermia activates ion channels that negatively affect fetal development.


Subject(s)
Congenital Abnormalities/etiology , Fever/complications , Heart Failure/etiology , Neural Crest/pathology , TRPV Cation Channels/metabolism , Animals , Chick Embryo , Chickens , Congenital Abnormalities/metabolism , Congenital Abnormalities/pathology , Female , Heart Failure/metabolism , Heart Failure/pathology , Maternal-Fetal Exchange , Mice , Mice, Inbred C57BL , Neural Crest/metabolism , Pregnancy , Zebrafish
4.
Dev Biol ; 354(1): 18-30, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21419761

ABSTRACT

Cardiac neural crest cells migrate into the pharyngeal arches where they support development of the pharyngeal arch arteries. The pharyngeal endoderm and ectoderm both express high levels of FGF8. We hypothesized that FGF8 is chemotactic for cardiac crest cells. To begin testing this hypothesis, cardiac crest was explanted for migration assays under various conditions. Cardiac neural crest cells migrated more in response to FGF8. Single cell tracing indicated that this was not due to proliferation and subsequent transwell assays showed that the cells migrate toward an FGF8 source. The migratory response was mediated by FGF receptors (FGFR) 1 and 3 and MAPK/ERK intracellular signaling. To test whether FGF8 is chemokinetic and/or chemotactic in vivo, dominant negative FGFR1 was electroporated into the premigratory cardiac neural crest. Cells expressing the dominant negative receptor migrated slower than normal cardiac neural crest cells and were prone to remain in the vicinity of the neural tube and die. Treating with the FGFR1 inhibitor, SU5402 or an FGFR3 function-blocking antibody also slowed neural crest migration. FGF8 over-signaling enhanced neural crest migration. Neural crest cells migrated to an FGF8-soaked bead placed dorsal to the pharynx. Finally, an FGF8 producing plasmid was electroporated into an ectopic site in the ventral pharyngeal endoderm. The FGF8 producing cells attracted a thick layer of mesenchymal cells. DiI labeling of the neural crest as well as quail-to-chick neural crest chimeras showed that neural crest cells migrated to and around the ectopic site of FGF8 expression. These results showing that FGF8 is chemotactic and chemokinetic for cardiac neural crest adds another dimension to understanding the relationship of FGF8 and cardiac neural crest in cardiovascular defects.


Subject(s)
Cell Movement/drug effects , Chemotaxis/drug effects , Fibroblast Growth Factor 8/pharmacology , Neural Crest/cytology , Animals , Apoptosis/drug effects , Butadienes/pharmacology , Cell Proliferation/drug effects , Chick Embryo , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heart/embryology , Immunohistochemistry , In Situ Hybridization , Mesoderm/embryology , Mesoderm/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Myocardium/cytology , Myocardium/metabolism , Neural Crest/embryology , Neural Crest/metabolism , Nitriles/pharmacology , Pharynx/embryology , Pharynx/metabolism , Pyrroles/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction
5.
Dev Biol ; 348(2): 167-76, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20920499

ABSTRACT

Sonic hedgehog signaling in the secondary heart field has a clear role in cardiac arterial pole development. In the absence of hedgehog signaling, proliferation is reduced in secondary heart field progenitors, and embryos predominantly develop pulmonary atresia. While it is expected that proliferation in the secondary heart field would be increased with elevated hedgehog signaling, this idea has never been tested. We hypothesized that up-regulating hedgehog signaling would increase secondary heart field proliferation, which would lead to arterial pole defects. In culture, secondary heart field explants proliferated up to 6-fold more in response to the hedgehog signaling agonist SAG, while myocardial differentiation and migration were unaffected. Treatment of chick embryos with SAG at HH14, just before the peak in secondary heart field proliferation, resulted unexpectedly in stenosis of both the aortic and pulmonary outlets. We examined proliferation in the secondary heart field and found that SAG-treated embryos exhibited a much milder increase in proliferation than was indicated by the in vitro experiments. To determine the source of other signaling factors that could modulate increased hedgehog signaling, we co-cultured secondary heart field explants with isolated pharyngeal endoderm or outflow tract and found that outflow tract co-cultures prevented SAG-induced proliferation. BMP2 is made and secreted by the outflow tract myocardium. To determine whether BMP signaling could prevent SAG-induced proliferation, we treated explants with SAG and BMP2 and found that BMP2 inhibited SAG-induced proliferation. In vivo, SAG-treated embryos showed up-regulated BMP2 expression and signaling. Together, these results indicate that BMP signaling from the outflow tract modulates hedgehog-induced proliferation in the secondary heart field.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Heart/embryology , Hedgehog Proteins/metabolism , Signal Transduction , Animals , Bone Morphogenetic Proteins/genetics , Cell Proliferation , Chick Embryo , Cyclohexylamines/pharmacology , Hedgehog Proteins/genetics , Myocardium/metabolism , Organogenesis , Thiophenes/pharmacology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...