Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4236, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762595

ABSTRACT

Hydroxide exchange membrane fuel cells (HEMFCs) have the advantages of using cost-effective materials, but hindered by the sluggish anodic hydrogen oxidation reaction (HOR) kinetics. Here, we report an atomically dispersed Ir on Mo2C nanoparticles supported on carbon (IrSA-Mo2C/C) as highly active and stable HOR catalysts. The specific exchange current density of IrSA-Mo2C/C is 4.1 mA cm-2ECSA, which is 10 times that of Ir/C. Negligible decay is observed after 30,000-cycle accelerated stability test. Theoretical calculations suggest the high HOR activity is attributed to the unique Mo2C substrate, which makes the Ir sites with optimized H binding and also provides enhanced OH binding sites. By using a low loading (0.05 mgIr cm-2) of IrSA-Mo2C/C as anode, the fabricated HEMFC can deliver a high peak power density of 1.64 W cm-2. This work illustrates that atomically dispersed precious metal on carbides may be a promising strategy for high performance HEMFCs.

2.
J Phys Condens Matter ; 36(19)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38306709

ABSTRACT

Pressure-induced structural phase transitions play a pivotal role in unlocking novel material functionalities and facilitating innovations in materials science. Nonetheless, unveiling the mechanisms of densification, which relies heavily on precise and comprehensive structural analysis, remains a challenge. Herein, we investigated the archetypalB4 →B1 phase transition pathway in ZnO by combining x-ray absorption fine structure (XAFS) spectroscopy with machine learning. Specifically, we developed an artificial neural network (NN) to decipher the extended-XAFS spectra by reconstructing the partial radial distribution functions of Zn-O/Zn pairs. This provided us with access to the evolution of the structural statistics for all the coordination shells in condensed ZnO, enabling us to accurately track the changes in the internal structural parameteruand the anharmonic effect. We observed a clear decrease inuand an increased anharmonicity near the onset of theB4 →B1 phase transition, indicating a preference for the iT phase as the intermediate state to initiate the phase transition that can arise from the softening of shear phonon modes. This study suggests that NN-based approach can facilitate a more comprehensive and efficient interpretation of XAFS under complexin-situconditions, which paves the way for highly automated data processing pipelines for high-throughput and real-time characterizations in next-generation synchrotron photon sources.

3.
Nat Commun ; 15(1): 76, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167348

ABSTRACT

Ni-based hydrogen oxidation reaction (HOR) electrocatalysts are promising anode materials for the anion exchange membrane fuel cells (AEMFCs), but their application is hindered by their inherent instability for practical operations. Here, we report a TiO2 supported Ni4Mo (Ni4Mo/TiO2) catalyst that can effectively catalyze HOR in alkaline electrolyte with a mass activity of 10.1 ± 0.9 A g-1Ni and remain active even up to 1.2 V. The Ni4Mo/TiO2 anode AEMFC delivers a peak power density of 520 mW cm-2 and durability at 400 mA cm-2 for nearly 100 h. The origin for the enhanced activity and stability is attributed to the down-shifted d band center, caused by the efficient charge transfer from TiO2 to Ni. The modulated electronic structure weakens the binding strength of oxygen species, rendering a high stability. The Ni4Mo/TiO2 has achieved greatly improved stability both in half cell and single AEMFC tests, and made a step forward for feasibility of efficient and durable AEMFCs.

4.
Nat Commun ; 15(1): 416, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195701

ABSTRACT

The performances of single-atom catalysts are governed by their local coordination environments. Here, a thermal replacement strategy is developed for the synthesis of single-atom catalysts with precisely controlled and adjustable local coordination environments. A series of Co-SxN4-x (x = 0, 1, 2, 3) single-atom catalysts are successfully synthesized by thermally replacing coordinated N with S at elevated temperature, and a volcano relationship between coordinations and catalytic performances toward electrochemical CO2 reduction is observed. The Co-S1N3 catalyst has the balanced COOH*and CO* bindings, and thus locates at the apex of the volcano with the highest performance toward electrochemical CO2 reduction to CO, with the maximum CO Faradaic efficiency of 98 ± 1.8% and high turnover frequency of 4564 h-1 at an overpotential of 410 mV tested in H-cell with CO2-saturated 0.5 M KHCO3, surpassing most of the reported single-atom catalysts. This work provides a rational approach to control the local coordination environment of the single-atom catalysts, which is important for further fine-tuning the catalytic performance.

5.
Angew Chem Int Ed Engl ; 63(3): e202316123, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37997525

ABSTRACT

Modulating the surface and spatial structure of the host is associated with the reactivity of the active site, and also enhances the mass transfer effect of the CO2 electroreduction process (CO2 RR). Herein, we describe the development of two-step ligand etch-pyrolysis to access an asymmetric dual-atomic-site catalyst (DASC) composed of a yolk-shell carbon framework (Zn1 Mn1 -SNC) derived from S,N-coordinated Zn-Mn dimers anchored on a metal-organic framework (MOF). In Zn1 Mn1 -SNC, the electronic effects of the S/N-Zn-Mn-S/N configuration are tailored by strong interactions between Zn-Mn dual sites and co-coordination with S/N atoms, rendering structural stability and atomic distribution. In an H-cell, the Zn1 Mn1 -SNC DASC shows a low onset overpotential of 50 mV and high CO Faraday efficiency of 97 % with a low applied overpotential of 343 mV, thus outperforming counterparts, and in a flow cell, it also reaches a high current density of 500 mA cm-2 at -0.85 V, benefitting from the high structure accessibility and active dual sites. DFT simulations showed that the S,N-coordinated Zn-Mn diatomic site with optimal adsorption strength of COOH* lowers the reaction energy barrier, thus boosting the intrinsic CO2 RR activity on DASC. The structure-property correlation found in this study suggests new ideas for the development of highly accessible atomic catalysts.

6.
Chem Commun (Camb) ; 60(6): 718-721, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38108441

ABSTRACT

Single-atom catalysts (SACs), distinguished by their exceptional atomic efficiency and modifiable coordination structures, find wide-ranging applicability, notably in the context of the hydrogen evolution reaction (HER). Herein, we synthesized a Ti3C2Tx-based Ni single-atom catalyst (Ni SA@N-Ti3C2Tx) by immersing a single Ni atom into the Ti vacancies of Ti3C2Tx and using a N-doping strategy. X-Ray adsorption fine structure revealed the formation of local Ni-N1C1 and an unsaturated C-Ni-N bridge configuration for isolated Ni species. Moreover, Ni SA@N-Ti3C2Tx exhibited an excellent HER performance with an overpotential of 63 mV at 10 mV cm-2. This work could enable use of MXene-based SACs in the HER.

7.
Nat Commun ; 14(1): 6849, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891185

ABSTRACT

Atomic-level coordination engineering is an efficient strategy for tuning the catalytic performance of single-atom catalysts (SACs). However, their rational design has so far been plagued by the lack of a universal correlation between the coordination symmetry and catalytic properties. Herein, we synthesised planar-symmetry-broken CuN3 (PSB-CuN3) SACs through microwave heating for electrocatalytic CO2 reduction. Remarkably, the as-prepared catalysts exhibited a selectivity of 94.3% towards formate at -0.73 V vs. RHE, surpassing the symmetrical CuN4 catalyst (72.4% at -0.93 V vs. RHE). In a flow cell equipped with a PSB-CuN3 electrode, over 90% formate selectivity was maintained at an average current density of 94.4 mA cm-2 during 100 h operation. By combining definitive structural identification with operando X-ray spectroscopy and theoretical calculations, we revealed that the intrinsic local symmetry breaking from planar D4h configuration induces an unconventional dsp hybridisation, and thus a strong correlation between the catalytic activity and microenvironment of metal centre (i.e., coordination number and distortion), with high preference for formate production in CuN3 moiety. The finding opens an avenue for designing efficient SACs with specific local symmetries for selective electrocatalysis.

8.
Nanomicro Lett ; 15(1): 143, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266746

ABSTRACT

The performance of proton exchange membrane fuel cells is heavily dependent on the microstructure of electrode catalyst especially at low catalyst loadings. This work shows a hybrid electrocatalyst consisting of PtNi-W alloy nanocrystals loaded on carbon surface with atomically dispersed W sites by a two-step straightforward method. Single-atomic W can be found on the carbon surface, which can form protonic acid sites and establish an extended proton transport network at the catalyst surface. When implemented in membrane electrode assembly as cathode at ultra-low loading of 0.05 mgPt cm-2, the peak power density of the cell is enhanced by 64.4% compared to that with the commercial Pt/C catalyst. The theoretical calculation suggests that the single-atomic W possesses a favorable energetics toward the formation of *OOH whereby the intermediates can be efficiently converted and further reduced to water, revealing a interfacial cascade catalysis facilitated by the single-atomic W. This work highlights a novel functional hybrid electrocatalyst design from the atomic level that enables to solve the bottle-neck issues at device level.

9.
ACS Appl Mater Interfaces ; 15(22): 26363-26372, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232289

ABSTRACT

Nanozymes with high activity and stability have emerged as a potential alternative to natural enzymes in the past years, but the relationship between the electronic metal-support interactions (EMSI) and catalytic performance in nanozymes still remains unclear. Herein, a copper nanoparticle nanozyme supported on N-doped Ti3C2Tx (Cu NPs@N-Ti3C2Tx) is successfully synthesized and the modulation of EMSI is achieved by introducing N species. The stronger EMSI between Cu NPs and Ti3C2Tx, involving electronic transfer and an interface effect, is revealed by X-ray photoelectron spectroscopy, soft X-ray absorption spectroscopy, and hard X-ray absorption fine spectroscopy at the atomic level. Consequently, Cu NPs@N-Ti3C2Tx nanozyme exhibits remarkable peroxidase-like activity, surpassing its counterpart (Cu NPs, Ti3C2Tx, Cu NPs-Ti3C2Tx), suggesting that EMSI significantly enhances catalytic performance. Benefiting from the excellent performance, the colorimetric platform based on Cu NPs@N-Ti3C2Tx nanozyme for detecting astaxanthin is constructed and shows a wide linear detection range of 0.01-50 µM and a limit of detection of 0.015 µM in the sunscreens. Density functional theory is further conducted to reveal that the excellent performance is ascribed to the stronger EMSI. This work opens an avenue for studying the influence of EMSI toward catalytic performance of nanozyme.


Subject(s)
Copper , Nanoparticles , Copper/chemistry , Titanium , Nitrogen , Nanoparticles/chemistry , Antioxidants , Peroxidases
10.
ACS Appl Mater Interfaces ; 14(47): 52849-52856, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36394544

ABSTRACT

The rechargeable zinc-air batteries (ZABs) are promising energy storage devices, but their performance is limited by the air electrode, coming from the contradictory wettability requirements of the air electrode at charging and discharging. Herein, to improve the mass transport and adapt to its different requirements when charging and discharging the ZABs, a Janus air electrode was fabricated with a void-rich, superaerophobic oxygen evolution reaction catalytic layer and a dense superhydrophobic oxygen reduction reaction catalytic layer. The ZAB using the Janus air electrode exhibits a low voltage gap of 0.78 V for charging and discharging at 10 mA cm-2, and it can stably work for more than 1 month (1100 cycles) with the decay of only about 10%. Wettability analyses revealed that the Janus superwetting structure provides good electrolyte contact, improves the mass transfer of O2, and prevents electrolyte leakage and flooding, leading to the high performance. These results suggest the advantage of the Janus electrode in reversible energy-converting devices.

11.
Nano Lett ; 22(18): 7563-7571, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36103215

ABSTRACT

Surface and strain engineering are two effective strategies to improve performance; however, synergetic controls of surface and strain effects remains a grand challenge. Herein, we report a highly efficient and stable electrocatalyst with defect-rich Pt atomic layers coating an ordered Pt3Sn intermetallic core. Pt atomic layers enable the generation of 4.4% tensile strain along the [001] direction. Benefiting from synergetic controls of surface and strain engineering, Pt atomic-layer catalyst (Ptatomic-layer) achieves a remarkable enhancement on ethanol electrooxidation performance with excellent specific activity of 5.83 mA cm-2 and mass activity of 1166.6 mA mg Pt-1, which is 10.6 and 3.6 times higher than the commercial Pt/C, respectively. Moreover, the intermetallic core endows Ptatomic-layer with outstanding durability. In situ infrared reflection-absorption spectroscopy as well as density functional theory calculations reveal that tensile strain and rich defects of Ptatomci-layer facilitate to break C-C bond for complete ethanol oxidation for enhanced performance.

12.
ACS Appl Mater Interfaces ; 14(24): 27814-27822, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35694972

ABSTRACT

The precise regulation for the structural properties of nanomaterials at the atomic scale is an effective strategy to develop high-performance catalysts. Herein, a facile dual-regulation approach was developed to successfully synthesize Ru1Ptn single atom alloy (SAA) with atomic Ru dispersed in Pt nanocrystals. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure demonstrated that Ru atoms were dispersed in Pt nanocrystals as single atoms. Impressively, the Ru1Ptn-SAA exhibited an ultrahigh specific activity (23.59 mA cm-2) and mass activity (2.805 mA/µg-PtRu) for methanol oxidation reaction (MOR) and exhibited excellent exchange current density activity (1.992 mA cm-2) and mass activity (4.71 mA/µg-PtRu) for hydrogen oxidation reaction (HOR). Density functional theory calculations revealed that the introduction of Ru atoms greatly reduced the reaction free energy for the decomposition of water molecules, which promoted the removal of CO* in the MOR process and adjusted the Gibbs free energy of hydrogen and hydroxyl adsorption to promote the HOR. Our work provided an effective idea for the development of high performance electrocatalysts.

13.
ACS Appl Mater Interfaces ; 13(45): 53683-53690, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34726386

ABSTRACT

1,2-Dichloroethane (1,2-DCE) is a toxic volatile organic compound, which is harmful to the environment and human health. Herein, we develop a single-atom Ru catalyst anchored on the mesoporous schistose γ-Al2O3 (Ru SACs/m-γ-Al2O3) to enhance the catalytic activity and selectivity toward 1,2-DCE degradation. The Ru SACs/m-γ-Al2O3 shows low T50 and T90 (the temperature for 50 and 90% conversion) of 215 and 289 °C, which are lower than those for Ru NPs/m-γ-Al2O3 (291 and 374 °C) and pristine m-γ-Al2O3 (323 and 386 °C). The degradation products are mainly CO2 (>94%) and HCl (>90%) by using the Ru SACs/m-γ-Al2O3 catalyst, and almost no byproducts are detected. Furthermore, Ru SACs/m-γ-Al2O3 also presents excellent anti-chlorine poisoning effect and water resistance during the stability test. This work may shed light on the development of efficient single-atom catalysts for the degradation of industrial pollutants.

14.
ACS Appl Mater Interfaces ; 13(15): 17736-17744, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33829753

ABSTRACT

The electrochemical CO2 reduction reaction (CO2RR) offers an environmentally benign pathway for renewable energy conversion and further regulation of the environmental CO2 concentration to achieve carbon cycling. However, developing desired electrocatalysts with high CO Faradaic efficiency (FECO) at an ultralow overpotential remains a grand challenge. Herein, we report an effective CO2RR electrocatalyst that features Ag single-atom coordinated with three nitrogen atoms (Ag1-N3) anchored on porous concave N-doped carbon (Ag1-N3/PCNC), which is identified by X-ray absorption spectroscopy. Ag1-N3/PCNC shows a low CO2RR onset potential of -0.24 V, high maximum FECO of 95% at -0.37 V, and high CO partial current density of 7.6 mA cm-2 at -0.55 V, exceeding most of the previous Ag electrocatalysts. The in situ infrared absorption spectra technique proves that Ag1-N3 single-atom sites have sole linear-adsorbed CO and can easily desorb *CO species to achieve the highest CO selectivity in comparison with the corresponding counterparts. This work provides significant inspiration on boosting CO2RR by tuning the active center at an atomic level to achieve a specific absorption with an intermediate.

15.
Angew Chem Int Ed Engl ; 59(50): 22465-22469, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-32876989

ABSTRACT

Main-group element indium (In) is a promising electrocatalyst which triggers CO2 reduction to formate, while the high overpotential and low Faradaic efficiency (FE) hinder its practical application. Herein, we rationally design a new In single-atom catalyst containing exclusive isolated Inδ+ -N4 atomic interface sites for CO2 electroreduction to formate with high efficiency. This catalyst exhibits an extremely large turnover frequency (TOF) up to 12500 h-1 at -0.95 V versus the reversible hydrogen electrode (RHE), with a FE for formate of 96 % and current density of 8.87 mA cm-2 at low potential of -0.65 V versus RHE. Our findings present a feasible strategy for the accurate regulation of main-group indium catalysts for CO2 reduction at atomic scale.

16.
Nano Lett ; 20(7): 5443-5450, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32515966

ABSTRACT

Oxygen-involved electrochemical reactions are crucial for plenty of energy conversion techniques. Herein, we rationally designed a carbon-based Mn-N2C2 bifunctional electrocatalyst. It exhibits a half-wave potential of 0.915 V versus reversible hydrogen electrode for oxygen reduction reaction (ORR), and the overpotential is 350 mV at 10 mA cm-2 during oxygen evolution reaction (OER) in alkaline condition. Furthermore, by means of operando X-ray absorption fine structure measurements, we reveal that the bond-length-extended Mn2+-N2C2 atomic interface sites act as active centers during the ORR process, while the bond-length-shortened high-valence Mn4+-N2C2 moieties serve as the catalytic sites for OER, which is consistent with the density functional theory results. The atomic and electronic synergistic effects for the isolated Mn sites and the carbon support play a critical role to promote the oxygen-involved catalytic performance, by regulating the reaction free energy of intermediate adsorption. Our results give an atomic interface strategy for nonprecious bifunctional single-atom electrocatalysts.

17.
Nat Commun ; 11(1): 3049, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546781

ABSTRACT

Atomic interface regulation is thought to be an efficient method to adjust the performance of single atom catalysts. Herein, a practical strategy was reported to rationally design single copper atoms coordinated with both sulfur and nitrogen atoms in metal-organic framework derived hierarchically porous carbon (S-Cu-ISA/SNC). The atomic interface configuration of the copper site in S-Cu-ISA/SNC is detected to be an unsymmetrically arranged Cu-S1N3 moiety. The catalyst exhibits excellent oxygen reduction reaction activity with a half-wave potential of 0.918 V vs. RHE. Additionally, through in situ X-ray absorption fine structure tests, we discover that the low-valent Cuprous-S1N3 moiety acts as an active center during the oxygen reduction process. Our discovery provides a universal scheme for the controllable synthesis and performance regulation of single metal atom catalysts toward energy applications.

18.
Nano Lett ; 20(5): 3442-3448, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32324412

ABSTRACT

Designing low-cost, high-efficiency, platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in an alkaline electrolyte is of great importance for the development of anion exchange membrane fuel cells. Herein, we report a novel HOR catalyst, RuNi1, in which Ni is atomically dispersed on the Ru nanocrystals. To note, the as-prepared RuNi1 catalyst exhibits excellent catalytic activity and stability for HOR in alkaline media, which is superior to those of Ru-Ni bimetallic nanocrystals, pristine Ru, and commercial Pt/C catalysts. Density functional theory (DFT) calculations suggest that isolation of Ni atoms on Ru nanocrystals not only optimizes the hydrogen-binding energy but also decreases the free energy of water formation, thus leading to excellent electrocatalytic activity of RuNi1 catalyst. The results show that engineering a catalyst at an atomic level is highly effective for rational design of electrocatalysts with high performance.

19.
J Am Chem Soc ; 142(18): 8431-8439, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32302111

ABSTRACT

The engineering coordination environment offers great opportunity in performance tunability of isolated metal single-atom catalysts. For the most popular metal-Nx (MNx) structure, the replacement of N atoms by some other atoms with relatively weak electronegativity has been regarded as a promising strategy for optimizing the coordination environment of an active metal center and promoting its catalytic performance, which is still a challenge. Herein, we proposed a new synthetic strategy of an in situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks for designing atomic Co1-P1N3 interfacial structure, where a cobalt single atom is costabilized by one P atom and three N atoms (denoted as Co-SA/P-in situ). In the acidic media, the Co-SA/P-in situ catalyst with Co1-P1N3 interfacial structure exhibits excellent activity and durability for the hydrogen evolution reaction (HER) with a low overpotential of 98 mV at 10 mA cm-2 and a small Tafel slope of 47 mV dec-1, which are greatly superior to those of catalyst with Co1-N4 interfacial structure. We discover that the bond-length-extended high-valence Co1-P1N3 atomic interface structure plays a crucial role in boosting the HER performance, which is supported by in situ X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculation. We hope this work will promote the development of high performance metal single-atom catalysts.

20.
Chem Sci ; 11(23): 5994-5999, 2020 May 20.
Article in English | MEDLINE | ID: mdl-34094090

ABSTRACT

Atomic interface engineering is an effective pathway to regulate the performance of single metal atom catalysts for electrochemical reactions in energy applications. Herein, we construct a sulfur modified Mn-N-C single atom catalyst through a metal-organic framework derived atomic interface strategy, which exhibits outstanding ORR activity with a half-wave potential of 0.916 V vs. RHE in alkaline media. Moreover, operando X-ray absorption spectroscopy analysis indicates that the isolated bond-length extending the low-valence Mn-N4-C x S y moiety serves as an active site during the ORR process. These findings suggest a promising method for the advancement of single atom catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...