Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Ageing Res Rev ; : 102359, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821418

ABSTRACT

The intricate origins and diverse symptoms of Alzheimer's disease (AD) pose significant challenges for both diagnosis and treatment. Exosomes and microvesicles, which carry disease-specific cargo from a variety of central nervous system cell types, have emerged as promising reservoirs of biomarkers for AD. Research on the screening of possible biomarkers in Alzheimer's disease using proteomic profiling of EVs is systematically reviewed in this comprehensive review. We highlight key methodologies employed in EV isolation, characterization, and proteomic analysis, elucidating their advantages and limitations. Furthermore, we summarize the evolving landscape of EV-associated biomarkers implicated in AD pathogenesis, including proteins involved in amyloid-beta metabolism, tau phosphorylation, neuroinflammation, synaptic dysfunction, and neuronal injury. The literature review highlights the necessity for robust validation strategies and standardized protocols to effectively transition EV-based biomarkers into clinical use. In the concluding section, this review delves into potential future avenues and technological advancements pivotal in crafting EV-derived biomarkers applicable to AD diagnostics and prognostics. This review contributes to our comprehension of AD pathology and the advancement of precision medicine in neurodegenerative diseases, hinting at a promising era in AD precision medicine.

2.
Int J Biol Macromol ; 265(Pt 1): 130746, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467219

ABSTRACT

The burgeoning field of starch-based nanomaterials in biomedical applications has perceived notable progressions, with a particular emphasis on their pivotal role in precision drug delivery and the inhibition of tumor growth. The complicated challenges in current biomedical research require innovative approaches for improved therapeutic outcomes, prompting an exploration into the possible of starch-based nanomaterials. The conceptualization of this review emerged from recognizing the need for a comprehensive examination of the structural attributes, versatile properties, and mechanisms underlying the efficiency of starch-based nanomaterials in inhibiting tumor growth and enabling targeted drug delivery. This review delineates the substantial growth in utilizing starch-based nanomaterials, elucidating their small size, high surface-volume ratio, and biocompatibility, predominantly emphasizing their possible to actively recognize cancer cells, deliver anticancer drugs, and combat tumors efficiently. The investigation of these nanomaterials encompasses to improving biocompatibility and targeting specific tissues, thereby contributing to the evolving landscape of precision medicine. The review accomplishes by highlighting the auspicious strategies and modern developments in the field, envisioning a future where starch-based nanomaterials play a transformative role in molecular nanomaterials, evolving biomedical sciences. The translation of these advancements into clinical applications holds the potential to revolutionize targeted drug delivery and expand therapeutic outcomes in the realm of precision medicine.


Subject(s)
Antineoplastic Agents , Nanostructures , Neoplasms , Humans , Nanostructures/chemistry , Drug Delivery Systems , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Precision Medicine
3.
Lipids Health Dis ; 22(1): 203, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001454

ABSTRACT

OBJECTIVE: The goal of this study was to explore the hypolipidemic effects of bergenin extracted from Saxifraga melanocentra Franch (S. melanocentra), which is a frequently utilized Tibetan medicinal plant known for its diverse bioactivities. Establishing a quality control system for black stem saxifrage is crucial to ensure the rational utilization of its medicinal resources. METHODS: A one-step polyamide medium-pressure liquid chromatography technique was applied to isolate and prepare bergenin from a methanol extract of S. melanocentra. A zebrafish model of hyperlipidemia was used to investigate the potential hypolipidemic effects of bergenin. RESULTS: The results revealed that bergenin exhibited substantial hypo efficacy in vivo. Specifically, bergenin significantly reduced the levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) while simultaneously increasing high-density lipoprotein cholesterol (HDL-c) levels. At the molecular level, bergenin exerted its effects by inhibiting the expression of FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-1ß, and TNF while promoting the expression of IL-4 at the transcriptional level. Molecular docking analysis further demonstrated the strong binding affinity of bergenin to proteins such as FASN, SREBF1, HMGCRα, RORα, LDLRα, IL-4, IL-1ß, and TNF. CONCLUSIONS: Findings indicate that bergenin modulates lipid metabolism by regulating lipid and cholesterol synthesis as well as inflammatory responses through signaling pathways associated with FASN, SREBF1, and RORα. These results position bergenin as a potential candidate for the treatment of hyperlipidemia.


Subject(s)
Hyperlipidemias , Saxifragaceae , Animals , Hyperlipidemias/drug therapy , Hyperlipidemias/genetics , Interleukin-4 , Molecular Docking Simulation , Zebrafish , Triglycerides , Cholesterol, LDL , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/therapeutic use
4.
Food Funct ; 14(22): 10151-10162, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37902068

ABSTRACT

The aim of this study is to investigate the alleviating effect of selenium-enriched Lactobacillus plantarum (SL) 6076 on colitis and liver inflammation induced by sodium dextran sulfate (DSS) in mice and its potential molecular mechanisms. Lactobacillus plantarum (LA) was cultured for 3 generations on MRS medium containing sodium selenite to generate SL. LA (3.2 × 1011 CFU mL-1), low selenium Lactobacillus plantarum (LS) (3.9 × 1010 CFU mL-1, 0.35 mg mL-1 Se) and high selenium Lactobacillus plantarum (HS) (2.8 × 1010 CFU mL-1, 0.52 mg mL-1 Se) were continuously fed to mice for 21 d to observe their effects on DSS-induced colitis and liver inflammation in mice. The composition of gut microbiota was detected through high-throughput 16S rRNA sequencing, and inflammatory cytokines, oxidative stress parameters, and serum biochemical indicators were measured in the colon and liver using quantitative polymerase chain reaction (qPCR) and biochemical analysis methods. The results showed that SL alleviated inflammation symptoms in the colon and liver, reduced the expression of inflammatory factors in the colon and liver, regulated oxidative stress responses in the colon, downregulated NF-κB-P65 pathway factors, and altered the composition and structure of the gut microbiota. In summary, DSS-induced colitis may cause liver inflammation, and SL had a significant relieving effect on both colon and liver inflammation. The intervention effect of SL was better than that of LA, while HS was better than LS. SL had a significant alleviating effect on DSS-induced colitis, and may exert its therapeutic effect by downregulating NF-κB-P65 signaling pathways and regulating the structure of intestinal microbiota. This study provides a new approach for the treatment of colitis.


Subject(s)
Colitis , Hepatitis , Lactobacillus plantarum , Selenium , Mice , Animals , Lactobacillus plantarum/metabolism , Dextran Sulfate/adverse effects , Selenium/pharmacology , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Colon/metabolism , Cytokines/metabolism , Hepatitis/metabolism , Disease Models, Animal , Mice, Inbred C57BL
5.
Curr Res Food Sci ; 7: 100583, 2023.
Article in English | MEDLINE | ID: mdl-37691695

ABSTRACT

Changes in flavor volatiles of three colored wheat grains (black, green, and yellow) after cooking were detected via gas chromatography-ion migration spectrometry (GC-IMS) to explore corresponding volatile flavor traits. A total of 52 volatile chemicals were spotted among these cooked wheat grains, including 30 aldehydes (accounting for 73.86-83.78%), 11 ketones (9.53-16.98%), 3 alcohols (0.88-1.21%), 4 furans (4.82-7.44%), 2 esters (0.28-0.42%), and 2 pyrazines (0.18-0.32%). Aldehydes, ketones, and furans were the main volatile compounds in three different cooked wheat. For black-colored wheat, the relative contents of benzene acetaldehyde, benzaldehyde, 2-methyl butanal, and 3-methyl butanal were much higher (p < 0.05). For green-colored wheat, the relative contents of nonanal, 2-pentyl furan, (E)-hept-2-enal, 2-butanone, and acetone were significantly higher (p < 0.05). For yellow-colored wheat, the relative amounts of heptanal, hexanal, and pentanal were much higher (p < 0.05). The overall volatile substances of the three cooked wheat grains might be classified by GC-IMS data coupled with principal component analysis and heatmap clustering analysis. A reliable forecast set was established through orthogonal partial least squares-discriminant analysis (OPLS-DA), and 22 differential volatile compounds were screened out based on variable importance in projection (VIP) being higher than 1.0, as flavor markers for distinguishing the three cooked wheat grains. These results suggest that GC-IMS could be used for characterizing the flavor volatiles of different colored wheat, and the findings could contribute certain information for understand the aroma traits in different colored cooked wheat and related products in the future.

6.
Theranostics ; 13(12): 4138-4165, 2023.
Article in English | MEDLINE | ID: mdl-37554286

ABSTRACT

Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/metabolism , Extracellular Vesicles/metabolism , Brain , Mesenchymal Stem Cells/metabolism
7.
Front Nutr ; 10: 1118156, 2023.
Article in English | MEDLINE | ID: mdl-36998914

ABSTRACT

Introduction: Fortification of cereal products with natural plant extract is an interesting approach to fulfill the dietary requirement of the people. Materials and methods: Peels of pomegranate (rich source of natural compounds) were cut into small pieces and dried in three different methods such as solar drying (SOD), oven drying (OD), and sun drying (SUD). The fine powder was prepared and proximate compositions (protein, ash, moisture, fats, fiber, and carbohydrates), minerals (zinc, iron, calcium, and potassium), total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (DPPH) of the pomegranate peel powder (PP) were evaluated. Fine wheat flour (FWF) was fortified with different concentrations (3, 6, 8, 10, and 12 g) of PP powder, cookies were prepared and all the above analysis along with physical parameters (weight, width, thickness, spread ration) and sensory analysis were conducted. Cookies without PP powder were served as control. Results and discussion: Results showed that a SOD was the best for drying PP powder in terms of compositional analysis. Addition of PP powder significantly (P < 0.05) enhanced the nutritional value, minerals profile and physical attributes of the fortified cookies. Sensory analysis of fortified cookies indicated that the cookies were acceptable to the sensory panel. Therefore, in conclusion, PP powder dried by SOD method could be used commercially in baking industries to provide nutritional enriched cookies to fulfill the dietary requirements of the people.

8.
Molecules ; 28(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36677658

ABSTRACT

Globally, millions of people suffer from poor wound healing, which is associated with higher mortality rates and higher healthcare costs. There are several factors that can complicate the healing process of wounds, including inadequate conditions for cell migration, proliferation, and angiogenesis, microbial infections, and prolonged inflammatory responses. Current therapeutic methods have not yet been able to resolve several primary problems; therefore, their effectiveness is limited. As a result of their remarkable properties, bio-based materials have been demonstrated to have a significant impact on wound healing in recent years. In the wound microenvironment, bio-based materials can stimulate numerous cellular and molecular processes that may enhance healing by inhibiting the growth of pathogens, preventing inflammation, and stimulating angiogenesis, potentially converting a non-healing environment to an appropriately healing one. The aim of this present review article is to provide an overview of the mechanisms underlying wound healing and its pathophysiology. The development of bio-based nanomaterials for chronic diabetic wounds as well as novel methodologies for stimulating wound healing mechanisms are also discussed.


Subject(s)
Diabetes Mellitus , Nanostructures , Humans , Diabetes Mellitus/therapy , Wound Healing , Cell Movement , Inflammation
9.
Front Nutr ; 10: 1309963, 2023.
Article in English | MEDLINE | ID: mdl-38274211

ABSTRACT

Introduction: Cornus officinalis sieb. et zucc, a deciduous tree or shrub, is renowned for its "Cornus flesh" fruit, which is widely acknowledged for its medicinal value when matured and dried. Leveraging C. officinalis as a foundational ingredient opens avenues for the development of environmentally friendly health foods, ranging from beverages and jams to preserves and canned products. Packed with diverse bioactive compounds, this species manifests a spectrum of pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, immunomodulatory, neuroprotective, and cardiovascular protective properties. Methods: This study employs CiteSpace visual analysis software and a bibliometric analysis platform, drawing upon the Web of Science (WOS) database for literature spanning the last decade. Through a comprehensive analysis of available literature from WOS and Google Scholar, we present a thorough summary of the health benefits, phytochemistry, active compounds, and pharmacological effects of C. officinalis. Particular emphasis is placed on its potential in developing functional drugs and foods. Results and Discussion: While this review enhances our understanding of C. officinalis as a prospective therapeutic agent, its clinical applicability underscores the need for further research and clinical studies to validate findings and establish safe and effective clinical applications.

10.
Front Nutr ; 9: 1024309, 2022.
Article in English | MEDLINE | ID: mdl-36451740

ABSTRACT

Sturgeons are a type of subcold water fish distributed in eastern Europe, on both sides of the North Pacific, in eastern Asia, in western North America, and on the east coast of North America. Its production capacity is strong, and it is easy to breed. However, the sturgeon industry has the problems of a single product structure, a short industrial chain and poor market sales. In this context, developing the sturgeon industry is crucial to research the nutritional value of sturgeon processing byproducts and developing diversified products. Therefore, this paper summarizes the research on the nutritional value of sturgeon processing byproducts and the current situation of processing and utilization over the past 10 years. First, CiteSpace visual analysis software and the bibliometric analysis platform were used to analyze the status of sturgeon research. The Web of Science (WOS) database was used as the literature source to fit the keywords of sturgeon literature in the past ten years. After excluding the two keywords sturgeon and sturgeon meat, the relevant literature is analyzed and sorted, focusing on the literature in the last five years. Second, a comprehensive and in-depth review (sturgeon, processing, byproducts as the keywords to search Google Scholar and Web of Science) was conducted on the research of the nutritional components contained in sturgeon and the processing of nutritional components in byproducts to provide a reliable reference for the research and processing of the sturgeon industry.

11.
Front Chem ; 10: 944793, 2022.
Article in English | MEDLINE | ID: mdl-36105311

ABSTRACT

In the presence of dry ice, a series of graphitic materials with carboxylated edges (ECGs) were synthesized by ball milling graphite for varied times (24, 36, and 46 h). The influence of carboxylation on the physiochemical characteristics and electrochemical performance as effective electrodes for supercapacitors were assessed and compared with pure graphite. Several characterization techniques were employed to investigate into the morphology, texture, microstructure, and modification of the materials. Due to its interconnected micro-mesoporous carbon network, which is vital for fast charge-discharge at high current densities, storing static charges, facilitating electrolyte transport and diffusion, and having excellent rate performance, the ECG-46 electrode among the investigated samples achieved the highest specific capacitance of 223 F g-1 at 0.25 A g-1 current density and an outstanding cycle stability, with capacitance retention of 90.8% for up to 10,000 cycles. Furthermore, the symmetric supercapacitor device based on the ECG-46 showed a high energy density of 19.20 W h kg-1 at 450.00 W kg-1 power density. With these unique features, ball milling of graphitic material in dry ice represents a promising approach to realize porous graphitic material with oxygen functionalities as active electrodes.

12.
Foods ; 11(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36140923

ABSTRACT

This study investigated the possible mechanism of softening and senescence of blueberry after harvest using chitosan/thyme oil coating combined with UV-C (short wave ultraviolet irradiation) treatment. On the 56th day of storage, the CBP, cellulose, and hemicellulose contents in the chitosan/thyme oil coating +UV-C-treated group were 1.41, 1.65, and 1.20 times higher than those in the control group. Compared with the control group, the activities of polygalacturonase (PG), pectin methylesterase (PME), ß-glucosidase (ß-Gal), and cellulose (Cx) were significantly reduced (p < 0.05) after chitosan/thyme oil coating +UV-C, and their maximum values decreased by 5.41 µg/h g, 5.40 U/g, 12.41 U/g, and 3.85 µg/h g, respectively. Moreover, chitosan/thyme oil coating combined with UV-C treatment inhibited the gene expression of PG, PME, Cx, and ß-Gal and then regulated the decrease in PG, PME, Cx, and ß-Gal activities, inhibited the degradation of cell wall polysaccharides, and delayed the softening and senescence of postharvest blueberries. The results showed that chitosan/thyme oil coating, UV-C, and chitosan/thyme oil coating + UV-C could significantly inhibit postharvest softening of blueberry; chitosan/thyme oil coating +UV-C had the best effect.

13.
Bioinorg Chem Appl ; 2022: 7772305, 2022.
Article in English | MEDLINE | ID: mdl-35992048

ABSTRACT

Nutritional overload in the form of high-fat and nonglycolysis sugar intake contributes towards the accelerated creation of reactive oxygen species (ROS), hyperglycemia, and dyslipidemia. Glucose absorption and its subsequent oxidation processes in fat and muscle tissues alter as a consequence of these modifications. Insulin resistance (IR) caused glucose transporter 4 (GLUT4) translocation to encounter a challenge that manifested itself as changes in glycolytic pathways and insulin signaling. We previously found that beta (ß)-sitosterol reduces IR in fat tissue via IRS-1/PI3K/Akt facilitated signaling due to its hypolipidemic and hypoglycemic activity. The intention of this research was to see whether the phytosterol ß-sitosterol can aid in the translocation of GLUT4 in rats fed on high-fat diet (HFD) and sucrose by promoting Rab/IRAP/Munc 18 signaling molecules. The rats were labeled into four groups, namely control rats, HFD and sucrose-induced diabetic control rats, HFD and sucrose-induced diabetic rats given oral dose of 20 mg/kg body wt./day of ß-sitosterol treatment for 30 days, and HFD and sucrose-induced diabetic animals given oral administration of 50 mg/kg body wt./day metformin for 30 days. Diabetic rats administered with ß-sitosterol and normalized the titers of blood glucose, serum insulin, serum testosterone, and the status of insulin tolerance and oral glucose tolerance. In comparison with the control group, ß-sitosterol effectively regulated both glycolytic and gluconeogenesis enzymes. Furthermore, qRT-PCR analysis of the mRNA levels of key regulatory genes such as SNAP23, VAMP-2, syntaxin-4, IRAP, vimentin, and SPARC revealed that ß-sitosterol significantly regulated the mRNA levels of the above genes in diabetic gastrocnemius muscle. Protein expression analysis of Rab10, IRAP, vimentin, and GLUT4 demonstrated that ß-sitosterol had a positive effect on these proteins, resulting in effective GLUT4 translocation in skeletal muscle. According to the findings, ß-sitosterol reduced HFD and sucrose-induced IR and augmented GLUT4 translocation in gastrocnemius muscle through insulin signaling modulation via Rab/IRAP/Munc 18 and glucose metabolic enzymes. The present work is the first of its kind to show that ß-sitosterol facilitates GLUT4 vesicle fusion on the plasma membrane via Rab/IRAP/Munc 18 signaling molecules in gastrocnemius muscle.

14.
Front Nutr ; 9: 912504, 2022.
Article in English | MEDLINE | ID: mdl-35811939

ABSTRACT

Rice wine, a critical fermented alcoholic beverage, has a considerable role in different cultures. It contains compounds that may have functional and nutritional health benefits. Bacteria, yeasts, and fungi commonly found in rice wines during fermentation can induce microbial spoilage and deterioration of the quality during its distribution and aging processes. It is possible to control the microbial population of rice wines using different preservation techniques that can ultimately improve their commercial shelf life. This paper reviews the potential techniques that can be used to preserve the microbial safety of rice wines while maintaining their quality attributes and further highlights the advantages and disadvantages of each technique.

15.
Nutrients ; 14(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35889889

ABSTRACT

Diabetes mellitus has become a troublesome and increasingly widespread condition. Treatment strategies for diabetes prevention in high-risk as well as in affected individuals are largely attributed to improvements in lifestyle and dietary control. Therefore, it is important to understand the nutritional factors to be used in dietary intervention. A decreased risk of diabetes is associated with daily intake of millet-based foods. Pearl millet is a highly nutritious grain, nutritionally comparable and even superior in calories, protein, vitamins, and minerals to other large cereals, although its intake is confined to lower income segments of society. Pearl millet contains phenolic compounds which possess antidiabetic activity. Thus, it can be used to prepare a variety of food products for diabetes mellitus. Moreover, it also has many health benefits, including combating diabetes mellitus, cancer, cardiovascular conditions, decreasing tumour occurrence, lowering blood pressure, heart disease risk, cholesterol, and fat absorption rate. Therefore, the current review addresses the role of pearl millet in managing diabetes.


Subject(s)
Diabetes Mellitus , Pennisetum , Digestion , Edible Grain/chemistry , Humans , Pennisetum/metabolism , Phenols/analysis
16.
Molecules ; 27(13)2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35807524

ABSTRACT

We aimed to evaluate the inhibitory effect and mechanism of plantaricin YKX on S. aureus. The mode of action of plantaricin YKX against the cells of S. aureus indicated that plantaricin YKX was able to cause the leakage of cellular content and damage the structure of the cell membranes. Additionally, plantaricin YKX was also able to inhibit the formation of S. aureus biofilms. As the concentration of plantaricin YKX reached 3/4 MIC, the percentage of biofilm formation inhibition was over 50%. Fluorescent dye labeling combined with fluorescence microscopy confirmed the results. Finally, the effect of plantaricin YKX on the AI-2/LuxS QS system was investigated. Molecular docking predicted that the binding energy of AI-2 and plantaricin YKX was -4.7 kcal/mol and the binding energy of bacteriocin and luxS protein was -183.701 kcal/mol. The expression of the luxS gene increased significantly after being cocultured with plantaricin YKX, suggesting that plantaricin YKX can affect the QS system of S. aureus.


Subject(s)
Bacteriocins , Staphylococcal Infections , Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Bacteriocins/chemistry , Bacteriocins/pharmacology , Biofilms/drug effects , Humans , Molecular Docking Simulation , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects
17.
Front Chem ; 10: 894759, 2022.
Article in English | MEDLINE | ID: mdl-35864869

ABSTRACT

Graphene and its derivatives have been a burning issue in the last 10 years. Although many reviews described its application in electrochemical detection, few were focused on food detection. Herein, we reviewed the recent progress in applying graphene and composite materials in food detection during the past 10 years. We pay attention to food coloring materials, pesticides, antibiotics, heavy metal ion residues, and other common hazards. The advantages of graphene composites in electrochemical detection are described in detail. The differences between electrochemical detection involving graphene and traditional inherent food detection are analyzed and compared in depth. The results proved that electrochemical food detection based on graphene composites is more beneficial. The current defects and deficiencies in graphene composite modified electrode development are discussed, and the application prospects and direction of graphene in future food detection are forecasted.

18.
Food Sci Nutr ; 10(4): 1051-1057, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35432975

ABSTRACT

As potential biomass resources, biomass waste products have been considered worldwide in recent decades. Peony seed meal (PSM) is a kind of agricultural resource waste containing polyphenols, in particular flavonoids. In this study, the total flavonoids of PSM were extracted and purified by AB-8 macroporous resin (MR), the antioxidant activities of three extract fractions were evaluated, and the total flavonoids were encapsulated with alginate and chitosan by the complex coacervation method. After purification, the yield of total flavonoids was 11.32% and the content in the product increased to 42.89% ± 2.66. The antioxidant activities of three fractions on ·OH, DPPH, and ABTS assays exhibited the following descending order: ethanol elution fraction (ELF) > ethyl acetate extract fraction (EAF) > ethanol extract fraction (EEF). The single-factor assay showed that the encapsulated total flavonoid microcapsules (EFMs) were prepared with a chitosan concentration of 10 mg/ml, a sodium alginate concentration of 30 mg/ml, a calcium chloride concentration of 50 mg/ml, a ratio of sodium alginate to total flavonoids of 1:3, a flavonoid concentration of 40 mg/ml, and an encapsulation yield of 80.7%. Most microcapsules are smooth-faced, spherical and uniform in size ranging from 2 to 3 mm in diameter. In vitro release studies suggested that the EFM was stable at pH 1.2 and dissolved at pH 7.5. The result indicated that the EFM is worthy for the development of functional foods and supplements, and PSM could be a potential resource in the food and pharmaceutical industries.

19.
Molecules ; 27(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35408465

ABSTRACT

Lactic acid bacteria (LAB) produce antimicrobial substances that could potentially inhibit the growth of pathogenic and food spoilage microorganisms. Lacticaseibacillus rhamnosus XN2, isolated from yak yoghurt, demonstrated antibacterial activity against Bacillus subtilis, B. cereus, Micrococcus luteus, Brochothrix thermosphacta, Clostridium butyricum, S. aureus, Listeria innocua CICC 10416, L. monocytogenes, and Escherichia coli. The antibacterial activity was estimated to be 3200 AU/mL after 30 h cultivation. Time-kill kinetics curve showed that the semi-purified cell-free supernatants (CFS) of strain XN2 possessed bactericidal activity. Flow cytometry analysis indicated disruption of the sensitive bacteria membrane by semi-purified CFS, which ultimately caused cell death. Interestingly, sub-lethal concentrations of semi-purified CFS were observed to reduce the production of α-haemolysin and biofilm formation. We further investigated the changes in the transcriptional level of luxS gene, which encodes signal molecule synthase (Al-2) induced by semi-purified CFS from strain XN2. In conclusion, L. rhamnosus XN2 and its bacteriocin showed antagonistic activity at both cellular and quorum sensing (QS) levels. Finally, bacteriocin was further purified by reversed-phase high-performance liquid chromatography (RP-HPLC), named bacteriocin XN2. The amino acid sequence was Met-Lue-Lys-Lys-Phe-Ser-Thr-Ala-Tyr-Val.


Subject(s)
Bacteriocins , Lacticaseibacillus rhamnosus , Animals , Anti-Bacterial Agents , Cattle , Staphylococcus aureus , Yogurt
20.
Front Nutr ; 9: 1024190, 2022.
Article in English | MEDLINE | ID: mdl-37139102

ABSTRACT

Asparagus root (AR) is utilized globally as a traditional herbal medicine because it contains various bioactive compounds, such as polyphenols, flavonoids, saponins, and minerals. The composition profiles of AR are strongly affected by its botanical and geographical origins. Although minerals and heavy metals are minor constituents of AR, they play a crucial role in determining its quality and efficacy. A comprehensive classification of AR, its phytochemistry, and its pharmacology were reviewed and interpreted herein. Potentially eligible articles (in English) were identified through an electronic search of the Web of Science database (2010-2022) and Google (2001-2022). We used the primary search term "Asparagus roots" combined with the words "pharmacology," "bioactive compounds," "physicochemical properties," and "health benefits" to find the relevant literature. We screened the titles, keywords, and abstracts of the publications obtained from the database. A full copy of the article was obtained for further assessment if deemed appropriate. Different asparagus species might potentially be used as herbal medicines and functional foods. Phytochemical studies have revealed the presence of various bioactive compounds as valuable secondary metabolites. The dominant class of bioactive compounds in AR is flavonoids. Furthermore, AR displayed significant pharmacological effects, such as antioxidant, antimicrobial, antiviral, anticancer, anti-inflammatory, and antidiabetic effects, as shown in animal and human studies. This review provides a valuable resource to enable a thorough assessment of the profile of Asparagus root as a functional ingredient for the pharmaceutical and food industries. In addition, it is anticipated that this review will provide information to healthcare professionals seeking alternative sources of critical bioactive compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...