Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37765539

ABSTRACT

Microcapsules are small particles that can effectively protect a core material from degradation. Microcapsules with double capsule walls can improve stability and reduce breakage due to the fact that the physical and chemical properties of double-walled materials can complement each other, thus enhancing the quality and applicability of a microcapsule. Microcapsules can achieve controlled release of core materials by using a temperature-sensitive wall material. In this research, gelatin was used as the inner wall material for these double-walled microcapsules. The outer wall material was a composite material prepared by the reaction of a hydroxyl group in gum arabic with an amino group in N-isopropylacrylamide (NIPAM) in the presence of N, N'-methylene bisacrylamide (BIS), while lavender fragrance oil served as the core material. A complex coalescence method was used for the preparation of microcapsules with double capsule walls. The effects of different proportions of gum arabic to NIPAM on the core loading, microcapsule yield and thermal stability of microcapsules were studied in detail. Additionally, the stability of these fragrance microcapsules with double capsule walls in different solvents and pH values was evaluated. The sustained release properties and mechanism of cotton fabrics treated with prepared fragrance microcapsules were investigated. The results show that the microcapsules prepared with a 10:1 ratio of NIPAM to gum arabic have good temperature responsiveness. Therefore, clothing treated with microcapsules with temperature-sensitive wall materials can ensure that the human body has a fresh and pleasant smell in the case of perspiring in summer.

2.
Polymers (Basel) ; 15(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36850329

ABSTRACT

Traditional water-based dyeing of polyester textiles usually generates burdensome processes and a great deal of wastewater, which can no longer meet the green and sustainable developments in the textile dyeing industry. In the silicone waterless dyeing system, polyester textiles can be dyed with disperse dye without water. However, the dyeing performance of polyester textiles is influenced by the dispersant. In this study, the relationship between the properties of dispersants and disperse dyeing performance was studied. When the amount of dispersant NNO (2-Naphthalenesulfonic acid) was 1.2%, the exhaustion of disperse red 177 and the final K/S value of the dyed fabric improved to 94.18% and 14.73, respectively. However, the exhaustion of disperse red 177 was reduced from 90.73% to 82.61%, and the final K/S value of the dyed fabric was decreased from 14.77 to 14.01 when the dosage of MF (Naphthalenesulfonic acid) was 1.2%. Compared with different dyeing systems, the final uptake of disperse red 177 was 93.81% and 94.18% in traditional water-based and silicone waterless dyeing systems and the K/S value of the dyed fabric was almost the same. The washing and rubbing fastness (wet and dry) of the dyed fabric were found to be at a level of 4 or 4-5, and the light fastness of the dyed fabric was 3-4. If only the dispersant was added in the silicone waterless dyeing system, there was no leveling problems on dyed samples. Moreover, the maximum absorption wavelength of disperse red 177 was not changed after adding the dispersant. With an increasing amount of dispersant NNO, the solubility of the dye in the silicone solvent decreased, but it increased with an increasing amount of dispersant MF. In the relationship between dye exhaustion and dye solubility in a silicone waterless dyeing system, the exhaustion of dye was linearly and inversely proportional to the dye solubility. A dispersant with better hydrophilicity can decrease the solubility of the dye in dyeing media, and the dyeing performance of dye is better. Compared with previous studies, the exhaustion of dye was consistent with the ClogP value (hydrophobic constant) of the dyeing accelerant. Therefore, a dispersant with high hydrophilicity can reduce the solubility of dye and improve the exhaustion of disperse dye in a silicone waterless dyeing system. Moreover, the color fastness of the dyed fabric did not change before and after adding the dispersant.

3.
Polymers (Basel) ; 14(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35215571

ABSTRACT

Silk has been widely used not only in the textile field but also in non-textile applications, which is composed of inner fibrous protein, named fibroin, and outer global protein, named sericin. Due to big differences, such as appearance, solubility, amino acid composition and amount of reactive groups, silk fibroin and sericin usually need to be separated before further process. The residual sericin may influence the molecular weight, structure, morphology and properties of silk fibroin, so that degumming of silk is important and necessary, not only in textile field but also in non-textile applications. Traditional textile degumming processes, including soap, alkali or both, could bring such problems as environmental damage, heavy use of water and energy, and damage to silk fibroin. Therefore, this review aims to present a systematic work on environmentally friendly and green degumming processes of raw silk, including art of green degumming process, quantitative and qualitative evaluation, influence of degumming on molecular weight, structure, morphology and properties of silk. It is anticipated that rational selection and design of environmentally friendly and green degumming process is quite important and meaningful, not only for textile application but also for non-textile application.

4.
Polymers (Basel) ; 13(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771244

ABSTRACT

As a promising new dyeing process without using water, the non-aqueous medium dyeing of polyester has attracted people's attention and some progress has been made in related research. However, the oligomers of polyester fiber can affect the dyeing of polyester during the use of a silicone waterless dyeing system. Based on this point, the oligomer problem in the silicone waterless dyeing system was investigated. The oligomers of some different types of polyester were extracted by solvent extraction. A treatment method with little influence on the fiber was used to reduce the oligomer content in polyester. The improvement of the dyeing effect of polyester after treatment in silicone medium was studied, and the influence of the oligomer on polyester dyeing was also analyzed. For the dyeing of disperse blue 366, the dye exhaustion was increased by 3.25-3.71%, and the color depth of the dyed sample was increased by 6-13%. Moreover, the colorfastness to rubbing was also improved. In the comparison, the changes in thermal properties and crystallization properties of polyester were tested by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and X-ray diffraction analysis (XRD). The results showed that the thermal and crystalline properties of polyester fiber were not changed before and after solvent extraction.

5.
Polymers (Basel) ; 11(11)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31717899

ABSTRACT

In order to solve the poor rubbing fastness of dyed cotton fiber in the indigo/silicon non-aqueous dyeing system, the process parameters of the silicon non-aqueous dyeing system were optimized. Dyed cotton fiber was post-treated to achieve the optimum dyeing conditions for obtaining a better rubbing fastness. Meanwhile, the dyeing performance of cotton fiber in a traditional water bath and silicon non-aqueous dyeing system was compared. The results showed that the rubbing fastness of dyed cotton fiber in the silicon non-aqueous dyeing system (one dyeing) was lower than that of traditional water bath (twelve cycles), although the color depth of dyed cotton fiber was deeper. For obtaining a good rubbing fastness, the optimum temperature was about 70 °C and the optimal dyeing cycle was one. Moreover, fixing agents can significantly improve the rubbing fastness of dyed cotton fiber. Especially, cationic waterborne polyurethane had an optimal fixing effect on the dyed cotton fiber. Soft finishing would weaken the effect of fixing finishing on the dyed cotton fiber, but the softener can significantly improve the handle of dyed cotton fiber.

6.
Polymers (Basel) ; 11(3)2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30960395

ABSTRACT

The main goal of this article is to study the diffusion mechanism of aqueous solutions and the swelling of cellulosic fibers in the silicone non-aqueous dyeing system via fluorescent labeling. Due to non-polar media only adsorbing on the surface of fiber, cellulosic fiber could not swell as a result of the non-polar media. However, because water molecules can diffuse into the non-crystalline region of the fiber, cellulosic fiber could swell by water which was dispersed or emulsified in a non-aqueous dyeing system. To study the diffusion mechanism of an aqueous solution in the siloxane non-aqueous dyeing system, siloxane non-aqueous media was first diffused to the cellulosic fiber because of its lower surface tension. The resulting aqueous solution took more time to diffuse the surface of the cellulosic fiber, because water molecules must penetrate the siloxane non-aqueous media film. Compared with the fluorescent intensity of the fiber surface, the siloxane film could be re-transferred to the dye bath under the emulsification of the surfactant and the mechanical force. Therefore, a longer diffusion time of the aqueous solution ensured the dyeing feasibility for cellulosic fiber in the non-aqueous dyeing system.

7.
Polymers (Basel) ; 11(3)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30960504

ABSTRACT

Disperse dyeing for polyethylene terephthalate (PET) fiber in different non-aqueous solvent dyeing systems have been extensively studied over the past decades. In the present work, disperse dyeing for PET was investigated in a silicone solvent dyeing system. The influence of accelerant on the fiber swelling, uptake of dye, K/S value of dyed fiber, and dye solubility in the silicone solvent were systematically investigated. Compared with no accelerant, the final uptake of the disperse dye (C. I. Disperse Blue 367) could increase to 81% with 20% accelerant in the silicone solvent dyeing system, and the K/S value of dyed fiber was also higher (3.3 for no accelerant vs. 13.2 for accelerant). The influence of accelerant on the performance of disperse dyeing was also studied. Firstly, the solubility of the disperse dye in the silicone solvent can be decreased by the accelerant. Moreover, the solubility of the disperse dye is inversely proportional to the K/S value and the uptake of the dye. In addition, although the silicone solvent can diffuse to the inner fiber and has a partial swelling in the PET fiber, the swelling of PET can be improved by the accelerant. Furthermore, the swelling of fiber can reach equilibrium when the amount of accelerant was 15% (the weight of fiber). Therefore, this eco-friendly dyeing technology has considerable potential for application to a broad array of chemical fibers.

8.
Polymers (Basel) ; 10(9)2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30960955

ABSTRACT

In recent years, new concepts in textile dyeing technology have been investigated which aim to decrease the use of chemicals and the emission of water. In this work, dyeing of cotton textiles with reactive dyes has been investigated in a silicone non-aqueous dyeing system. Compared with conventional aqueous dyeing, almost 100% of reactive dyes can be adsorbed on cotton textiles without using any salts in non-aqueous dyeing systems, and the fixation of dye is also higher (80%~90% for non-aqueous dyeing vs. 40%~50% for traditional dyeing). The pseudo-second-order kinetic model can best describe the adsorption and equilibrium of reactive dyes in the non-aqueous dyeing systems as well as in the traditional water dyeing system. In the non-aqueous dyeing systems, the adsorption equilibrium of reactive dyes can be reached quickly. Particularly in the siloxane non-aqueous dyeing system, the adsorption equilibrium time of reactive dye is only 5⁻10 min at 25 °C, whereas more time is needed at 60 °C in the water dyeing system. The surface tension of non-aqueous media influences the adsorption rate of dye. The lower the surface tension, the faster the adsorption rate of reactive dye, and the higher the final uptake of dye. As a result, non-aqueous dyeing technology provides an innovative approach to increase dye uptake under a low dyeing temperature, in addition to making large water savings.

9.
Polymers (Basel) ; 10(10)2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30961083

ABSTRACT

Silicone reverse dyeing technology provides an important means of saving water and salts-free in the textile dyeing industry. The interactions between dyes and surfactants may influence the hydrolysis of dye during dyeing. In this investigation, the effect of ethylene oxide content in nonionic surfactant on the hydrolytic reaction of reactive dye was firstly investigated in a siloxane reverse emulsion dyeing system. Compared with no surfactants, the hydrolytic reaction of vinyl sulfone reactive dye was a slowdown when some nonionic surfactants were used during dyeing. Usually, the hydrophobic groups in nonionic surfactants were dodecyl chains but their polar head groups were different. The hydrolytic reaction of vinyl sulfone dye showed that the longer of EO (ethylene oxide) chains, the faster the hydrolytic reaction of vinyl sulfone dye. From the absorption spectrum of dye, it could be concluded that more of dyes would be solubilized into the formed micelles, and dye-surfactant complexes were adhered to the surface of micelles if the molecular structure of surfactant had a shorter EO chains. Furthermore, the intramolecular or intermolecular hydrogen bond could be formed between dye and surfactant, which would further influence the hydrolytic reaction of vinyl sulfone dye. However, the solubility of surfactant in siloxane non-aqueous media would decrease with the increase of EO chains. Meanwhile, the dispersion of dye was enhanced as well as the hydrolytic reaction of dye. From this investigation, some surfactant can be used to improve the fixation of reactive dye during dyeing. Furthermore, washing times after dyeing and the ecological problems can be decreased.

SELECTION OF CITATIONS
SEARCH DETAIL
...