Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nat Chem ; 16(3): 373-379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38228852

ABSTRACT

Photon-driven chemical processes are usually mediated by oxides, nitrides and sulfides whose photo-conversion efficiency is limited by charge carrier recombination. Here we show that lithium hydride undergoes photolysis upon ultraviolet illumination to yield long-lived photon-generated electrons residing in hydrogen vacancies, known as F centres. We demonstrate that photon-driven dehydrogenation and dark rehydrogenation over lithium hydride can be fulfilled reversibly at room temperature, which is about 600 K lower than the corresponding thermal process. As light-driven F centre generation could provide an alternative approach to charge carrier separation to favour chemical transformations that are kinetically or thermodynamically challenging, we show that light-activated lithium hydride cleaves the N≡N triple bond to form a N-H bond under mild conditions. Co-feeding a N2/H2 mixture with low H2 partial pressure leads to photocatalytic ammonia formation at near ambient conditions. This work provides insights into the development of advanced materials and processes for light harvesting and conversion.

2.
Angew Chem Int Ed Engl ; 62(26): e202302679, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37106279

ABSTRACT

Replacing widely used organic liquid electrolytes with solid-state electrolytes (SSEs) could effectively solve the safety issues in sodium-ion batteries. Efforts on seeking novel solid-state electrolytes have been continued for decades. However, issues about SSEs still exist, such as low ionic conductivity at ambient temperature, difficulty in manufacturing, low electrochemical stability, poor compatibility with electrodes, etc. Here, sodium carbazolide (Na-CZ) and its THF-coordinated derivatives are rationally fabricated as Na+ conductors, and two of their crystal structures are successfully solved. Among these materials, THF-coordinated complexes exhibit fast Na+ conductivities, i.e., 1.20×10-4  S cm-1 and 1.95×10-3  S cm-1 at 90 °C for Na-CZ-1THF and Na-CZ-2THF, respectively, which are among the top Na+ conductors under the same condition. Furthermore, stable Na plating/stripping is observed even over 400 h cycling, showing outstanding interfacial stability and compatibility against Na electrode. More advantages such as ease of synthesis, low-cost, and cold pressing for molding can be obtained. In situ NMR results revealed that the evaporation of THF may play an essential role in the Na+ migration, where the movement of THF creates defects/vacancies and facilitates the migration of Na+ .


Subject(s)
Electrolytes , Sodium , Ions , Cold Temperature , Commerce
3.
Chem Commun (Camb) ; 59(28): 4177-4180, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36942825

ABSTRACT

Sodium phenoxide is a potentially promising hydrogen storage material due to its high hydrogen capacity and enhanced thermodynamic properties. Nevertheless, efficient catalysts are still lacking due to the high kinetic barrier for the reversible hydrogen uptake and release of sodium phenoxide. In the current work, a comparative study on the catalytic hydrogenation of sodium phenoxide was conducted. To our delight, a simple yet effective ruthenium-based catalyst was identified to respond aggressively to hydrogen in the solid-state hydrogenation of sodium phenoxide even at room temperature. The activity was enhanced by 6 fold with the as-synthesized 5.0% Ru/TiO2 catalyst as compared to that with commercial 5.0% Ru/Al2O3, respectively, under the same conditions.

4.
Materials (Basel) ; 16(2)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36676604

ABSTRACT

Hydrazine borane (HB) is a chemical hydrogen storage material with high gravimetric hydrogen density of 15.4 wt%, containing both protic and hydridic hydrogen. However, its limitation is the formation of unfavorable gaseous by-products, such as hydrazine (N2H4) and ammonia (NH3), which are poisons to fuel cell catalyst, upon pyrolysis. Previous studies proved that confinement of ammonia borane (AB) greatly improved the dehydrogenation kinetics and thermodynamics. They function by reducing the particle size of AB and establishing bonds between silica functional groups and AB molecules. In current study, we employed the same strategy using MCM-41 and silica aerogel to investigate the effect of nanosizing towards the hydrogen storage properties of HB. Different loading of HB to the porous supports were investigated and optimized. The optimized loading of HB in MCM-41 and silica aerogel was 1:1 and 0.25:1, respectively. Both confined samples demonstrated great suppression of melting induced sample foaming. However, by-products formation was enhanced over dehydrogenation in an open system decomposition owing to the presence of extensive Si-O···BH3(HB) coordination that further promote the B-N bond cleavage to release N2H4. The Si-OH···N(N2H4) hydrogen bonding may further promote N-N bond cleavage in the resulting N2H4, facilitating the formation of NH3. As temperature increases, the remaining N-N-B oligomeric chains in the porous silica, which are lacking the long-range structure may further undergo intramolecular B-N or N-N cleavage to release substantial amount of N2H4 or NH3. Besides open system decomposition, we also reported a closed system decomposition where complete utilization of the N-H from the released N2H4 and NH3 in the secondary reaction can be achieved, releasing mainly hydrogen upon being heated up to high temperatures. Nanosizing of HB particles via PMMA encapsulation was also attempted. Despite the ester functional group that may favor multiple coordination with HB molecules, these interactions did not impart significant change towards the decomposition of HB selectively towards dehydrogenation.

5.
Nat Commun ; 13(1): 7205, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418855

ABSTRACT

Light harvesting, separation of charge carriers, and surface reactions are three fundamental steps that are essential for an efficient photocatalyst. Here we show that these steps in the TiO2 can be boosted simultaneously by disorder engineering. A solid-state reduction reaction between sodium and TiO2 forms a core-shell c-TiO2@a-TiO2-x(OH)y heterostructure, comprised of HO-Ti-[O]-Ti surface frustrated Lewis pairs (SFLPs) embedded in an amorphous shell surrounding a crystalline core, which enables a new genre of chemical reactivity. Specifically, these SFLPs heterolytically dissociate dihydrogen at room temperature to form charge-balancing protonated hydroxyl groups and hydrides at unsaturated titanium surface sites, which display high reactivity towards CO2 reduction. This crystalline-amorphous heterostructure also boosts light absorption, charge carrier separation and transfer to SFLPs, while prolonged carrier lifetimes and photothermal heat generation further enhance reactivity. The collective results of this study motivate a general approach for catalytically generating sustainable chemicals and fuels through engineered disorder in heterogeneous CO2 photocatalysts.

6.
J Am Chem Soc ; 144(38): 17441-17448, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36109500

ABSTRACT

Hydrodenitrogenation (HDN) of nitrogen-containing organic compounds such as aniline and its derivatives is of scientific interest and practical importance. Major efforts have been devoted to the development and understanding of transition metal-mediated chemical processes. Herein, we report a fundamentally different strategy using a transition metal-free material, that is, lithium hydride (LiH) enabling the hydrogenolysis of aniline to benzene and ammonia via a chemical looping approach. Aniline reacts with LiH to form lithium anilide, and subsequently, the hydrogenolysis of lithium anilide yields benzene and ammonia and regenerates LiH to complete the loop. This LiH-mediated chemical looping HDN process stands in sharp contrast to the transition metal-catalyzed or -mediated processes, which commonly lead to the complete hydrogenation of aromatic rings. A highly denitrogenated product formation rate of 2623 µmol·g-1·h-1 is achieved for the hydrogenolysis of lithium anilide at 300 °C and 10 bar H2, which exceeds the catalytic rate of transition metal catalysts. Computational studies reveal that the scission of C-N bonds is facilitated by a Li-mediated nucleophilic attack of hydride to the α-sp2C atom of aniline. This work not only provides a distinctive chemical looping route for HDN, but also opens up materials space for the denitrogenation of anilines.

7.
J Am Chem Soc ; 143(49): 20891-20897, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34854674

ABSTRACT

Selective hydrogenation of alkynes to alkenes requires a catalytic site with suitable electronic properties for modulating the adsorption and conversion of alkyne, alkene as well as dihydrogen. Here, we report a complex palladium hydride, CaPdH2, featured by electron-rich [PdH2]δ- sites that are surrounded by Ca cations that interacts with C2H2 and C2H4 via σ-bonding to Pd and unusual cation-π interaction with Ca, resulting in a much weaker chemisorption than those of Pd metal catalysts. Concomitantly, the dissociation of H2 and hydrogenation of C2Hx (x = 2-4) species experience significant energy barriers over CaPdH2, which is fundamentally different from those reported Pd-based catalysts. Such a unique catalytic environment enables CaPdH2, the very first complex transition-metal hydride catalyst, to afford a high alkene selectivity for the semihydrogenation of alkynes.

8.
J Phys Chem Lett ; 12(43): 10646-10653, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34704756

ABSTRACT

Fabrication of sufficient oxygen vacancies and exposure of active sites to reactants are two key factors to obtain high catalytic activity in the water-gas shift (WGS) reaction. However, these two factors are hard to satisfy spontaneously, since the formation of oxygen vacancies and encapsulation of metal nanoparticles are two inherent properties in reducible metal oxide supported catalysts due to the strong metal-support interaction (SMSI) effect. In this work, we find that addition of alkali to an anatase supported Ni catalyst (Ni/TiO2(A)) could well regulate the SMSI to achieve both more oxygen vacancies and depression of encapsulation; therefore, more than 20-fold enhancement in activity is obtained. It is found that the in situ formed titanate species on the catalyst surface is crucial to the formation of oxygen vacancies and depression of encapsulation. Furthermore, the methanation, a common side reaction of the WGS reaction, is successfully suppressed in the whole catalytic process.

9.
Chem Asian J ; 16(18): 2633-2640, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34288552

ABSTRACT

Classical strong metal-support interaction (SMSI) is of significant importance to heterogeneous catalysis, where electronic promotion and encapsulation of noble metal by reducible support are two main intrinsic properties of SMSI. However, the excessive encapsulation will inevitably hamper the contact between active sites and reactant, leading to reduced activity in catalysis. Herein, alkaline earth metal salts are employed to depress the encapsulation of Ru nanoparticles in Ru/TiO2 catalyst in the present study. Thermodynamic calculation, transmission electron microscopy (TEM) and chemisorption results show that the alkaline earth metal salts could successfully prevent the migration of TiO2-x overlayer to Ru nanoparticles in Ru/TiO2 catalyst via in situ formation of titanates, resulting in high exposure of active metal. Meanwhile, X-ray photoelectron spectroscopy (XPS) and hydrogen temperature-programmed reduction (H2 -TPR) results reveal that an even stronger electron donation from the reduced support to Ru nanoparticles is achieved. As a result, the alkaline earth metal salts-doped Ru/TiO2 catalysts exhibit superior activity in catalytic hydrogenation of aromatics, which is in contrast to the pristine Ru/TiO2 catalyst that shows negligible activity under the same conditions due to the excess encapsulation of Ru nanoparticles in Ru/TiO2 catalyst.

10.
Chem Commun (Camb) ; 56(13): 1944-1947, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-31967625

ABSTRACT

The lack of efficient hydrogen storage material is one of the bottlenecks for the large-scale implementation of hydrogen energy. Here, a series of new hydrogen storage materials, i.e., anilinide-cyclohexylamide pairs, are proposed via the metallation of an aniline-cyclohexylamine pair. DFT calculations show that the enthalpy change of hydrogen desorption (ΔHd) can be significantly tuned from 60.0 kJ per mol-H2 for the pristine aniline-cyclohexylamine pair to 42.2 kJ per mol-H2 for sodium anilinide-cyclohexylamide and 38.7 kJ per mol-H2 for potassium anilinide-cyclohexylamide, where an interesting correlation between the electronegativity of the metal and the ΔHd was observed. Experimentally, the sodium anilinide-cyclohexylamide pair was successfully synthesised with a theoretical hydrogen capacity of 4.9 wt%, and the hydrogenation and dehydrogenation cycle can be achieved at a relatively low temperature of 150 °C in the presence of commercial catalysts, in clear contrast to the pristine aniline-cyclohexylamine pair which undergoes dehydrogenation at elevated temperatures.

11.
ACS Appl Mater Interfaces ; 12(6): 7071-7080, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31948227

ABSTRACT

The strong metal-support interaction (SMSI) is of significant importance to heterogeneous catalysis. The electronic modification and encapsulation of active metals by reducible supports are the intrinsic properties of the SMSI, where the latter would decrease or even cease the catalytic activity of transition metals. Here, we demonstrate for the first time that alkalies are the functional additives that can effectively manipulate the SMSI for better hydrogenation catalysis. Specifically, both thermodynamic analyses and experimental results show that the addition of alkalies to the Ru/TiO2 catalyst could form a titanate top layer that effectively hampers the migration of TiO2-x to the surface of Ru nanoparticles. In the meantime, a substantially enhanced reduction of the support is achieved, leading to an even stronger electron donation from the support to Ru. The alkali-modified Ru/TiO2 exhibits superior low-temperature catalytic activity in the hydrogenation of aromatics, which is ca. an order of magnitude higher than that of the commercial Ru/Al2O3 catalyst and is in clear contrast to that of the neat Ru/TiO2 catalyst that shows negligible activity due to the severe encapsulation of Ru by TiO2-x.

12.
Angew Chem Int Ed Engl ; 58(10): 3102-3107, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30474308

ABSTRACT

Hydrogen uptake and release in arene-cycloalkane pairs provide an attractive opportunity for on-board and off-board hydrogen storage. However, the efficiency of arene-cycloalkane pairs currently is limited by unfavorable thermodynamics for hydrogen release. It is shown here that the thermodynamics can be optimized by replacement of H in the -OH group of cyclohexanol and phenol with alkali or alkaline earth metals. The enthalpy change upon dehydrogenation decreases substantially, which correlates with the delocalization of the oxygen electron to the benzene ring in phenoxides. Theoretical calculations reveal that replacement of H with a metal leads to a reduction of the HOMO-LUMO energy gap and elongation of the C-H bond in the α site in cyclohexanolate, which indicates that the cyclohexanol is activated upon metal substitution. The experimental results demonstrate that sodium phenoxide-cyclohexanolate, an air- and water-stable pair, can desorb hydrogen at ca. 413 K and 373 K in the solid form and in an aqueous solution, respectively. Hydrogenation, on the other hand, is accomplished at temperatures as low as 303 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...