Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Cell Rep Med ; 5(5): 101550, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38723624

ABSTRACT

Tumor recurrence after chemoradiotherapy is challenging to overcome, and approaches to predict the recurrence remain elusive. Here, human cervical cancer tissues before and after concurrent chemoradiotherapy (CCRT) analyzed by single-cell RNA sequencing reveal that CCRT specifically promotes CD8+ T cell senescence, driven by atypical chemokine receptor 2 (ACKR2)+ CCRT-resistant tumor cells. Mechanistically, ACKR2 expression is increased in response to CCRT and is also upregulated through the ligation of CC chemokines that are produced by activated myeloid and T cells. Subsequently, ACKR2+ tumor cells are induced to produce transforming growth factor ß to drive CD8+ T cell senescence, thereby compromising antitumor immunity. Moreover, retrospective analysis reveals that ACKR2 expression and CD8+ T cell senescence are enhanced in patients with cervical cancer who experienced recurrence after CCRT, indicating poor prognosis. Overall, we identify a subpopulation of CCRT-resistant ACKR2+ tumor cells driving CD8+ T cell senescence and tumor recurrence and highlight the prognostic value of ACKR2 and CD8+ T cell senescence for chemoradiotherapy recurrence.


Subject(s)
CD8-Positive T-Lymphocytes , Cellular Senescence , Chemoradiotherapy , Neoplasm Recurrence, Local , Uterine Cervical Neoplasms , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/immunology , Uterine Cervical Neoplasms/drug therapy , Chemoradiotherapy/methods , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/genetics , Animals , Mice , Cell Line, Tumor , Prognosis , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Transforming Growth Factor beta/metabolism , T-Cell Senescence
2.
Exp Hematol Oncol ; 13(1): 52, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760861

ABSTRACT

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the predominant malignancies globally. Percutaneous thermal ablation (PTA) has gained widespread use among NSCLC patients, with the potential to elicit immune responses but limited therapeutic efficacies for advanced-stage disease. T-helper type 9 (Th9) cells are a subset of CD4+ effector T cells with robust and persistent anti-tumor effects. This study proposes to develop PTA-Th9 cell integrated therapy as a potential strategy for NSCLC treatment. METHODS: The therapeutic efficacies were measured in mice models with subcutaneously transplanted, recurrence, or lung metastatic tumors. The tumor microenvironments (TMEs) were evaluated by flow cytometry. The cytokine levels were assessed by ELISA. The signaling molecules were determined by quantitative PCR and Western blotting. The translational potential was tested in the humanized NSCLC patient-derived xenograft (PDX) model. RESULTS: We find that PTA combined with adoptive Th9 cell transfer therapy substantially suppresses tumor growth, recurrence, and lung metastasis, ultimately extending the survival of mice with NSCLC grafts, outperforming both PTA and Th9 cell transfer monotherapy. Analysis of TMEs indicates that combinatorial therapy significantly augments tumor-infiltrating Th9 cells, boosts anti-tumor effects of CD8+ T cells, and remodels tumor immunosuppressive microenvironments. Moreover, combinatorial therapy significantly strengthens the regional and circulation immune response of CD8+ T cells in mice with tumor lung metastasis and induces peripheral CD8+ T effector memory cells in mice with tumor recurrence. Mechanically, PTA reinforces the anti-tumor ability of Th9 cells primarily through upregulating interleukin (IL)-1ß and subsequently activating the downstream STAT1/IRF1 pathway, which could be effectively blocked by intercepting IL-1ß signaling. Finally, the enhanced therapeutic effect of combinatorial therapy is validated in humanized NSCLC PDX models. CONCLUSIONS: Collectively, this study demonstrates that combinatorial therapy displays robust and durable anti-tumor efficacy and excellent translational potential, offering excellent prospects for translation and emerging as a promising approach for NSCLC treatment.

3.
Cancer Res ; 84(5): 688-702, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38199791

ABSTRACT

Detection of cytoplasmic DNA is an essential biological mechanism that elicits IFN-dependent and immune-related responses. A better understanding of the mechanisms regulating cytoplasmic DNA sensing in tumor cells could help identify immunotherapeutic strategies to improve cancer treatment. Here we identified abundant cytoplasmic DNA accumulated in lung squamous cell carcinoma (LUSC) cells. DNA-PK, but not cGAS, functioned as a specific cytoplasmic DNA sensor to activate downstream ZAK/AKT/mTOR signaling, thereby enhancing the viability, motility, and chemoresistance of LUSC cells. DNA-PK-mediated cytoplasmic DNA sensing boosted glycolysis in LUSC cells, and blocking glycolysis abolished the tumor-promoting activity of cytoplasmic DNA. Elevated DNA-PK-mediated cytoplasmic DNA sensing was positively correlated with poor prognosis of human patients with LUSC. Targeting signaling activated by cytoplasmic DNA sensing with the ZAK inhibitor iZAK2 alone or in combination with STING agonist or anti-PD-1 antibody suppressed the tumor growth and improved the survival of mouse lung cancer models and human LUSC patient-derived xenografts model. Overall, these findings established DNA-PK-mediated cytoplasmic DNA sensing as a mechanism that supports LUSC malignancy and highlight the potential of targeting this pathway for treating LUSC. SIGNIFICANCE: DNA-PK is a cytoplasmic DNA sensor that activates ZAK/AKT/mTOR signaling and boosts glycolysis to enhance malignancy and chemoresistance of lung squamous cell carcinoma.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Animals , Mice , Humans , Drug Resistance, Neoplasm , Proto-Oncogene Proteins c-akt , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , DNA-Activated Protein Kinase , Glycolysis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung , TOR Serine-Threonine Kinases , Prognosis
5.
STAR Protoc ; 4(4): 102616, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37756156

ABSTRACT

Here, we present a protocol for exploring the effects of PPP1R15A inhibitor, Sephin1, on antitumor immunity of B16F1 subcutaneous tumor in mice. We describe steps for constructing single-cell transcriptome and TCR libraries, sequencing, and using sequencing data for the integration of expression and TCR data. We then detail procedures for gene differentiation, regulon and cell-cell communication analysis, and validation of single-cell analysis results. For complete details on the use and execution of this protocol, please refer to Wang et al.1.


Subject(s)
Cell Communication , Neoplasms , Animals , Mice , Disease Models, Animal , Single-Cell Analysis , Receptors, Antigen, T-Cell
6.
EMBO Rep ; 24(4): e56932, 2023 04 05.
Article in English | MEDLINE | ID: mdl-36862324

ABSTRACT

Obesity is associated with metabolic disorders and chronic inflammation. However, the obesity-associated metabolic contribution to inflammatory induction remains elusive. Here, we show that, compared with lean mice, CD4+ T cells from obese mice exhibit elevated basal levels of fatty acid ß-oxidation (FAO), which promote T cell glycolysis and thus hyperactivation, leading to enhanced induction of inflammation. Mechanistically, the FAO rate-limiting enzyme carnitine palmitoyltransferase 1a (Cpt1a) stabilizes the mitochondrial E3 ubiquitin ligase Goliath, which mediates deubiquitination of calcineurin and thus enhances activation of NF-AT signaling, thereby promoting glycolysis and hyperactivation of CD4+ T cells in obesity. We also report the specific GOLIATH inhibitor DC-Gonib32, which blocks this FAO-glycolysis metabolic axis in CD4+ T cells of obese mice and reduces the induction of inflammation. Overall, these findings establish a role of a Goliath-bridged FAO-glycolysis axis in mediating CD4+ T cell hyperactivation and thus inflammation in obese mice.


Subject(s)
Fatty Acids , Inflammation , Animals , Mice , Mice, Obese , Fatty Acids/metabolism , Inflammation/metabolism , Obesity/metabolism , Glycolysis , Ubiquitin-Protein Ligases/metabolism , Oxidation-Reduction
7.
iScience ; 26(2): 105954, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36718369

ABSTRACT

Protein phosphatase 1 regulatory subunit 15A (PPP1R15A) is an important factor in the integrated stress response (ISR) in mammals and may play a crucial role in tumorigenesis. In our studies, we found an inhibitor of PPP1R15A, Sephin1, plays a protumorigenic role in mouse tumor models. By analyzing the single-cell transcriptome data of the mouse tumor models, we found that in C57BL/6 mice, Sephin1 treatment could lead to higher levels of ISR activity and lower levels of antitumor immune activities. Specifically, Sephin1 treatment caused reductions in antitumor immune cell types and lower expression levels of cytotoxicity-related genes. In addition, T cell receptor (TCR) repertoire analysis demonstrated that the clonal expansion of tumor-specific T cells was inhibited by Sephin1. A special TCR + macrophage subtype in tumor was identified to be significantly depleted upon Sephin1 treatment, implying its key antitumor role. These results suggest that PPP1R15A has the potential to be an effective target for tumor therapy.

8.
Nat Commun ; 13(1): 7281, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435834

ABSTRACT

Chronic inflammation and an immunosuppressive microenvironment promote prostate cancer (PCa) progression and diminish the response to immune checkpoint blockade (ICB) therapies. However, it remains unclear how and to what extent these two events are coordinated. Here, we show that ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, functions downstream of inflammation-induced IKKß activation to shape the immunosuppressive tumor microenvironment (TME). Prostate-specific deletion of Arid1a cooperates with Pten loss to accelerate prostate tumorigenesis. We identify polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) as the major infiltrating immune cell type that causes immune evasion and reveal that neutralization of PMN-MDSCs restricts the progression of Arid1a-deficient tumors. Mechanistically, inflammatory cues activate IKKß to phosphorylate ARID1A, leading to its degradation via ß-TRCP. ARID1A downregulation in turn silences the enhancer of A20 deubiquitinase, a critical negative regulator of NF-κB signaling, and thereby unleashes CXCR2 ligand-mediated MDSC chemotaxis. Importantly, our results support the therapeutic strategy of anti-NF-κB antibody or targeting CXCR2 combined with ICB for advanced PCa. Together, our findings highlight that the IKKß/ARID1A/NF-κB feedback axis integrates inflammation and immunosuppression to promote PCa progression.


Subject(s)
Myeloid-Derived Suppressor Cells , Prostatic Neoplasms , Male , Humans , Prostate/metabolism , Chemotaxis , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Prostatic Neoplasms/metabolism , NF-kappa B/metabolism , Receptors, Interleukin-8B/metabolism , Protein Serine-Threonine Kinases , Inflammation/genetics , Inflammation/metabolism , Tumor Microenvironment/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Sci China Life Sci ; 65(12): 2354-2454, 2022 12.
Article in English | MEDLINE | ID: mdl-36066811

ABSTRACT

Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.


Subject(s)
Cardiovascular Diseases , Neoplasms , Humans , Aging/genetics , Aging/metabolism , Neoplasms/genetics
10.
Front Physiol ; 13: 898659, 2022.
Article in English | MEDLINE | ID: mdl-35685283

ABSTRACT

Background: The impairment of microvascular injury on prognosis has increasingly drawn extensive awareness along with the high morbidity and mortality of ST-segment elevation myocardial infarction (STEMI) over recent years. The prognostic significance of computational pressure-fluid dynamics applied to index of microcirculatory resistance, derived from coronary angiography (CPFD-caIMR) in microvascular injury evaluation of STEMI patients remained inconclusive. Methods: A total of 213 patients who met the inclusion criteria were selected retrospectively from 1003 STEMI patients from February 2018 to February 2020. Propensity score matching (PSM) was thereafter finished. CPFD-caIMR of all patients was obtained off-line using the software (FlashAngio, Rainmed Ltd., Suzhou, China) after PPCI. The primary endpoint was to compare the CPFD-caIMR and the incidence of major adverse cardiovascular events (MACEs) between drug-coated balloons (DCB) and drug-eluting stents (DES) groups. The correlation between CPFD-caIMR and MACEs was analyzed, and the prognosis of patients with STEMI was evaluated by CPFD-caIMR by multivariate regression analysis. Results: Totally 213 STEMI patients with successful primary percutaneous coronary intervention (PPCI) were included, of whom 84 patients accepted DCB and 129 patients accepted DES respectively. Baseline characteristics and CPFD-caIMR were comparable between DCB and DES groups after PSM (62 patients in each group). CPFD-caIMR was not significantly different between two groups (DES vs. DCB: mean difference: 2.26, 95% CI -4.05 to 8.57, p = 0.45), and so was it when re-grouped by whether CPFD-caIMR > 40U or not (DES vs. DCB: 34.17% vs. 27.16%, p = 0.29). After a follow-up of 1 year, more MACEs occurred in DES group than DCB group (relative risk: 2.50, 95% CI 1.04 to 6.02, p = 0.04). The predictors of MACEs by multi-variate analysis found that, only time from symptom to balloon (p = 0.03) and time from door to balloon (p < 0.01) were independent predictors of MACEs, independent of treatment with DCB or DES intervention. Furthermore, CPFD-caIMR > 40U became an independent predictor of the combined events including cardiovascular deaths or heart failure readmission irrespective of PSM (odds ratio: 4.07, 95% CI: 1.06 to 7.66, p = 0.04). Conclusion: CPFD-caIMR was a promising method for prognosis, which can predict CV death or heart failure readmission in STEMI patients. DCB was a possible strategy in PPCI of STEMI patients, not inferior to DES based on microvascular injury evaluated by CPFD-caIMR.

11.
Cell Death Differ ; 29(10): 2009-2023, 2022 10.
Article in English | MEDLINE | ID: mdl-35568718

ABSTRACT

Inflammasome contributes to the pathogenesis of various inflammatory diseases, but the epigenetic mechanism controlling its activation remains elusive. Here, we found that the histone methyltransferase Ezh2 mediates the activation of multiple types of inflammasomes in macrophages/microglia independent of its methyltransferase activity and thus promotes inflammasome-related pathologies. Mechanistically, Ezh2 functions through its SANT2 domain to maintain the enrichment of H3K27 acetylation in the promoter region of the long noncoding RNA (lncRNA) Neat1, thereby promoting chromatin accessibility and facilitating p65-mediated transcription of Neat1, which is a critical mediator of inflammasome assembly and activation. In addition, the tumour suppressor protein p53 competes with Ezh2 for the same binding region in the Neat1 promoter and thus antagonises Ezh2-induced Neat1 transcription and inflammasome activation. Therefore, loss of Ezh2 strongly promotes the binding of p53, which recruits the deacetylase SIRT1 for H3K27 deacetylation of the Neat1 promoter and thus suppresses Neat1 transcription and inflammasome activation. Overall, our study demonstrates an epigenetic mechanism involved in modulating inflammasome activation through an Ezh2/p53 competition model and highlights a novel function of Ezh2 in maintaining H3K27 acetylation to support lncRNA Neat1 transcription.


Subject(s)
RNA, Long Noncoding , Chromatin , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Inflammasomes/metabolism , RNA, Long Noncoding/metabolism , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
12.
J Clin Invest ; 132(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35230972

ABSTRACT

IFN-γ-stimulated MHC class I (MHC-I) antigen presentation underlies the core of antitumor immunity. However, sustained IFN-γ signaling also enhances the programmed death ligand 1 (PD-L1) checkpoint pathway to dampen antitumor immunity. It remains unclear how these opposing effects of IFN-γ are regulated. Here, we report that loss of the histone dimethyltransferase WHSC1 impaired the antitumor effect of IFN-γ signaling by transcriptional downregulation of the MHC-I machinery without affecting PD-L1 expression in colorectal cancer (CRC) cells. Whsc1 loss promoted tumorigenesis via a non-cell-autonomous mechanism in an Apcmin/+ mouse model, CRC organoids, and xenografts. Mechanistically, we found that the IFN-γ/STAT1 signaling axis stimulated WHSC1 expression and, in turn, that WHSC1 directly interacted with NLRC5 to promote MHC-I gene expression, but not that of PD-L1. Concordantly, silencing Whsc1 diminished MHC-I levels, impaired antitumor immunity, and blunted the effect of immune checkpoint blockade. Patient cohort analysis revealed that WHSC1 expression positively correlated with enhanced MHC-I expression, tumor-infiltrating T cells, and favorable disease outcomes. Together, our findings establish a tumor-suppressive function of WHSC1 that relays IFN-γ signaling to promote antigen presentation on CRC cells and provide a rationale for boosting WHSC1 activity in immunotherapy.


Subject(s)
B7-H1 Antigen , Histone-Lysine N-Methyltransferase , Neoplasms , Repressor Proteins , Animals , Antigen Presentation , B7-H1 Antigen/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones , Humans , Interferon-gamma , Intracellular Signaling Peptides and Proteins/metabolism , Mice
13.
J Exp Med ; 218(7)2021 07 05.
Article in English | MEDLINE | ID: mdl-33914044

ABSTRACT

TGFß is essential for the generation of anti-tumor Th9 cells; on the other hand, it causes resistance against anti-tumor immunity. Despite recent progress, the underlying mechanism reconciling the double-edged effect of TGFß signaling in Th9-mediated cancer immunotherapy remains elusive. Here, we find that TGFß-induced down-regulation of bifunctional apoptosis regulator (BFAR) represents the key mechanism preventing the sustained activation of TGFß signaling and thus impairing Th9 inducibility. Mechanistically, BFAR mediates K63-linked ubiquitination of TGFßR1 at K268, which is critical to activate TGFß signaling. Thus, BFAR deficiency or K268R knock-in mutation suppresses TGFßR1 ubiquitination and Th9 differentiation, thereby inhibiting Th9-mediated cancer immunotherapy. More interestingly, BFAR-overexpressed Th9 cells exhibit promising therapeutic efficacy to curtail tumor growth and metastasis and promote the sensitivity of anti-PD-1-mediated checkpoint immunotherapy. Thus, our findings establish BFAR as a key TGFß-regulated gene to fine-tune TGFß signaling that causes Th9 induction insensitivity, and they highlight the translational potential of BFAR in promoting Th9-mediated cancer immunotherapy.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Apoptosis Regulatory Proteins/immunology , Membrane Proteins/immunology , Neoplasms/immunology , Neoplasms/therapy , Signal Transduction/immunology , Transforming Growth Factor beta/immunology , Animals , Cell Differentiation/immunology , Down-Regulation/immunology , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Lymphocytes, Helper-Inducer/immunology
14.
Immunity ; 54(4): 632-647.e9, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33667382

ABSTRACT

Aging is associated with DNA accumulation and increased homeostatic proliferation of circulating T cells. Although these attributes are associated with aging-related autoimmunity, their direct contributions remain unclear. Conventionally, KU complex, the regulatory subunit of DNA-dependent protein kinase (DNA-PK), together with the catalytic subunit of DNA-PK (DNA-PKcs), mediates DNA damage repair in the nucleus. Here, we found KU complex abundantly expressed in the cytoplasm, where it recognized accumulated cytoplasmic DNA in aged human and mouse CD4+ T cells. This process enhanced T cell activation and pathology of experimental autoimmune encephalomyelitis (EAE) in aged mice. Mechanistically, KU-mediated DNA sensing facilitated DNA-PKcs recruitment and phosphorylation of the kinase ZAK. This activated AKT and mTOR pathways, promoting CD4+ T cell proliferation and activation. We developed a specific ZAK inhibitor, which dampened EAE pathology in aged mice. Overall, these findings demonstrate a KU-mediated cytoplasmic DNA-sensing pathway in CD4+ T cells that potentiates aging-related autoimmunity.


Subject(s)
Aging/immunology , Autoimmune Diseases/immunology , CD4-Positive T-Lymphocytes/immunology , Cytoplasm/immunology , DNA-Activated Protein Kinase/immunology , DNA/immunology , Inflammation/immunology , Animals , Cell Line , Cell Line, Tumor , Cell Nucleus/immunology , Cell Proliferation/physiology , DNA Repair/immunology , HEK293 Cells , Humans , Jurkat Cells , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , U937 Cells
15.
Cell Mol Immunol ; 18(4): 969-978, 2021 04.
Article in English | MEDLINE | ID: mdl-33707688

ABSTRACT

T follicular helper (Tfh) cells are crucial for regulating autoimmune inflammation and protective immunity against viral infection. However, the molecular mechanism controlling Tfh cell differentiation is poorly understood. Here, through two mixed bone marrow chimeric experiments, we identified Peli1, a T cell-enriched E3 ubiquitin ligase, as an intrinsic regulator that inhibits Tfh cell differentiation. Peli1 deficiency significantly promoted c-Rel-mediated inducible T-cell costimulator (ICOS) expression, and PELI1 mRNA expression was negatively associated with ICOS expression on human CD4+ T cells. Mechanistically, increased ICOS expression on Peli1-KO CD4+ T cells enhanced the activation of PI3K-AKT signaling and thus suppressed the expression of Klf2, a transcription factor that inhibits Tfh differentiation. Therefore, reconstitution of Klf2 abolished the differences in Tfh differentiation and germinal center reaction between WT and Peli1-KO cells. As a consequence, Peli1-deficient CD4+ T cells promoted lupus-like autoimmunity but protected against H1N1 influenza virus infection in mouse models. Collectively, our findings established Peli1 as a critical negative regulator of Tfh differentiation and indicated that targeting Peli1 may have beneficial therapeutic effects in Tfh-related autoimmunity or infectious diseases.


Subject(s)
Autoimmunity , Inducible T-Cell Co-Stimulator Protein/metabolism , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation/immunology , Nuclear Proteins/physiology , Orthomyxoviridae Infections/prevention & control , T Follicular Helper Cells/immunology , Ubiquitin-Protein Ligases/physiology , Animals , Cell Differentiation , Female , Gene Expression Regulation , Humans , Inducible T-Cell Co-Stimulator Protein/genetics , Influenza A Virus, H1N1 Subtype/immunology , Lupus Erythematosus, Systemic/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology
16.
Acta Biochim Biophys Sin (Shanghai) ; 53(1): 29-35, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33201175

ABSTRACT

The two-drug combined chemotherapy of platinum and fluorouracil has been reported to efficiently kill tumor cells as the first-line treatment for advanced gastric cancer. However, the effect of these drugs on T cells remains unclear. Here, we showed that T cells including CD4+ T cells and CD8+ T cells of the patients with advanced gastric cancer after platinum and fluorouracil chemotherapy exhibited enhanced ex vivo proliferation ability as compared to that before chemotherapy. In addition, platinum and fluorouracil also promoted the differentiation of human T cells into Th1 and Th9 subtypes and cytotoxic T lymphocytes (CTLs) in vitro and in vivo. Accordingly, the combination therapy greatly suppressed tumor growth with increased tumor infiltration of Th1, Th9, and CTL cells in a mouse tumor model. Moreover, in activated T cells, long-term treatment with these two drugs further facilitates T cell activation along with promoted nuclear factor-κB (NF-κB) activation. Our findings demonstrate a previously unidentified function of platinum and fluorouracil combination chemotherapy in promoting T cell-mediated antitumor immunity.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Fluorouracil/pharmacology , Neoplasms/immunology , Platinum/pharmacology , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Therapy, Combination/methods , Fluorouracil/therapeutic use , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/pathology , Mice, Inbred C57BL , NF-kappa B p50 Subunit/metabolism , Oxaliplatin/pharmacology , Oxaliplatin/therapeutic use , Platinum/therapeutic use , Stomach Neoplasms/blood , Stomach Neoplasms/drug therapy , Stomach Neoplasms/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Helper-Inducer/immunology
17.
Mitochondrial DNA B Resour ; 5(3): 2228-2230, 2020.
Article in English | MEDLINE | ID: mdl-33366984

ABSTRACT

Camellia nitidissima is an endangered species. This species contains two varieties. Here, we report on the chloroplast genomes of C. nitidissima var. nitidissima from Fangcheng (GenBank accession MT157617) and Nanning (MT157618), as well as one sample of C. nitidissima var. microcarpa (MT157619) from Nanning. The total chloroplast genomes of C. nitidissima var. nitidissima Fangcheng and Nanning samples are 156,596 bp and 157,567 bp in length, respectively. C. nitidissima var. microcarpa (MT157619) genome is 157,407 bp in length. The three samples possess GC contents of 37.3%, 128 genes, comprising 86 protein-coding genes, 34 tRNA genes, and 8 rRNA genes.

18.
Plant Divers ; 42(5): 343-350, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33134617

ABSTRACT

Camellia huana is an endangered species with a narrow distribution in limestone hills of northern Guangxi and southern Guizhou provinces, China. We used one chloroplast DNA (cpDNA) fragment and 12 pairs of microsatellite (simple sequence repeat; SSR) markers to assess the genetic diversity and structure of 12 C. huana populations. A total of 99 alleles were detected for 12 polymorphic loci, and eight haplotypes and nine polymorphic sites were detected within 5200 bp of cpDNA. C. huana populations showed a low level of genetic diversity (n = 8, Hd = 0.759, Pi = 0.00042 for cpDNA, N A  = 3.931, H E  = 0.466 for SSRs), but high genetic differentiation between populations (F ST  = 0.2159 for SSRs, F ST  = 0.9318 for cpDNA). This can be attributed to the narrow distribution and limestone habitat of C. huana. STRUCTURE analysis divided natural C. huana populations into two groups, consistent with their geographical distribution. Thus, we suggest that five natural C. huana populations should be split into two units to be managed effectively.

19.
J Exp Med ; 217(7)2020 07 06.
Article in English | MEDLINE | ID: mdl-32324863

ABSTRACT

Ubiquitination is an essential mechanism in the control of antiviral immunity upon virus infection. Here, we identify a series of ubiquitination-modulating enzymes that are modulated by vesicular stomatitis virus (VSV). Notably, TRIM24 is down-regulated through direct transcriptional suppression induced by VSV-activated IRF3. Reducing or ablating TRIM24 compromises type I IFN (IFN-I) induction upon RNA virus infection and thus renders mice more sensitive to VSV infection. Mechanistically, VSV infection induces abundant TRIM24 translocation to mitochondria, where TRIM24 binds with TRAF3 and directly mediates K63-linked TRAF3 ubiquitination at K429/K436. This modification of TRAF3 enables its association with MAVS and TBK1, which consequently activates downstream antiviral signaling. Together, these findings establish TRIM24 as a critical positive regulator in controlling the activation of antiviral signaling and describe a previously unknown mechanism of TRIM24 function.


Subject(s)
Antiviral Agents/metabolism , Immunity , Lysine/metabolism , Nuclear Proteins/metabolism , TNF Receptor-Associated Factor 3/metabolism , Transcription Factors/metabolism , Ubiquitination , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Base Sequence , Cell Nucleus/metabolism , Down-Regulation , HEK293 Cells , Humans , Inflammation/genetics , Interferon Type I/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Models, Biological , Nuclear Proteins/chemistry , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Transport , RING Finger Domains , Signal Transduction , TNF Receptor-Associated Factor 3/chemistry , TNF Receptor-Associated Factor 3/genetics , Transcription Factors/chemistry , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription, Genetic , Vesicular stomatitis Indiana virus/physiology
20.
Nat Commun ; 10(1): 4353, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554795

ABSTRACT

Stat6 is known to drive macrophage M2 polarization. However, how macrophage polarization is fine-tuned by Stat6 is poorly understood. Here, we find that Lys383 of Stat6 is acetylated by the acetyltransferase CREB-binding protein (CBP) during macrophage activation to suppress macrophage M2 polarization. Mechanistically, Trim24, a CBP-associated E3 ligase, promotes Stat6 acetylation by catalyzing CBP ubiquitination at Lys119 to facilitate the recruitment of CBP to Stat6. Loss of Trim24 inhibits Stat6 acetylation and thus promotes M2 polarization in both mouse and human macrophages, potentially compromising antitumor immune responses. By contrast, Stat6 mediates the suppression of TRIM24 expression in M2 macrophages to contribute to the induction of an immunosuppressive tumor niche. Taken together, our findings establish Stat6 acetylation as an essential negative regulatory mechanism that curtails macrophage M2 polarization.


Subject(s)
Macrophage Activation , Macrophages/metabolism , Neoplasms, Experimental/metabolism , Nuclear Proteins/metabolism , STAT6 Transcription Factor/metabolism , Transcription Factors/metabolism , Acetylation , Animals , Cell Line, Tumor , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gene Expression Regulation , HEK293 Cells , Humans , Lysine/genetics , Lysine/metabolism , Macrophages/classification , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Nuclear Proteins/genetics , STAT6 Transcription Factor/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...