Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37763253

ABSTRACT

This study was designed to investigate the effect on wheat yield of applying organic fertilizers (OF) with five different selenium (Se) concentrations. The mineral nutrients, cadmium (Cd) content, and the distribution of Se in wheat plants were also measured. The results showed that wheat yields reached a maximum of 9979.78 kg ha-1 in Mengcheng (MC) County and 8868.97 kg ha-1 in Dingyuan (DY) County, Anhui Province, China when the application amount of selenium-containing organic fertilizer (SOF) was up to 600 kg ha-1. Among the six mineral nutrients measured, only the calcium (Ca) content of the grains significantly increased with an increase in the application amount of SOF in the two regions under study. Cd content showed antagonistic effects with the Se content of wheat grains, and when the SOF was applied at 1200 kg ha-1, the Cd content of the grains was significantly reduced by 30.1% in MC and 67.3% in DY, compared with under the Se0 treatment. After application of SOF, the Se content of different parts of the wheat plant ranked root > grain > spike-stalk > glume > leaf > stem. In summary, SOF application at a suitable concentration could increase wheat yields and significantly promote the Ca content of the grains. Meanwhile, the addition of Se effectively inhibited the level of toxic Cd in the wheat grains.

2.
J Sci Food Agric ; 103(12): 5970-5980, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37114712

ABSTRACT

BACKGROUND: There is currently an increase in the use of new types of fertilizers in modern agriculture. Studies have shown that amino acid fertilizers can improve crop yield and quality. However, their effects on crop rhizosphere ecology and their ecological impacts on crop yield are largely unknown. This study evaluated the effects of a water-soluble amino acid fertilizer (WAAF) on tomatoes and its ecological effects on rhizosphere bacterial communities using greenhouse pot experiments. RESULTS: The results showed that WAAF could promote the growth of tomatoes and improve the quality of fruits more effectively than water-soluble chemical fertilizer controls. Interestingly, WAAF showed a different regulating pattern on root exudates and increased the secretion of 17 major water-soluble root exudates, including hexadecanoic acid and 3-hydroxy-γ-butyrolactone. Water-soluble amino acid fertilizer also affected noticeably the composition, abundance, and beta-diversity of rhizosphere bacterial communities, and strengthened the potential relationships between community members. Water-soluble amino acid fertilizer showed a significant selective enrichment ability and recruited some members of the genera such as Cupriavidus, Ralstonia, Chitinophaga, Gemmatimonas, Mitsuaria, Mucilaginibacter, Paracoccus, Sphingopyxis, and Variovorax. Network analysis and functional prediction implied that, besides fertilizer effects, the recruiting of beneficial microbes involved in chemotaxis and biofilm formation was also a considerable factor in tomato yield and quality improvement. CONCLUSION: Our study revealed ecological and recruiting effects of WAAF on rhizosphere microbes and potentially beneficial microbiota, and provided a basis for the amino acid fertilizer regulation of rhizosphere ecology to improve soil health and further improve crop yield and quality. © 2023 Society of Chemical Industry.


Subject(s)
Fertilizers , Solanum lycopersicum , Soil/chemistry , Solanum lycopersicum/chemistry , Rhizosphere , Bacteroidetes , Amino Acids/chemistry
3.
J Plant Physiol ; 255: 153275, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33161338

ABSTRACT

SUMOylation is a post-translational modification process that comprises a tandem enzymatic cascade, i.e., maturation, activation, conjugation, and ligation of a small ubiquitin-like modifier, which triggers the modulated activities and transport of the cellular proteins to other areas of the cell. In Oryza sativa (rice), OsSIZ1/2 encoding E3 SUMO ligase exerts regulatory influences on Pi homeostasis and developmental responses. However, the role of OsSAE1a, SUMO E1 activating enzyme, in regulating phosphate (Pi) utilization and/or growth and development is not known in rice and was thus investigated in this study. The qRT-PCR assay revealed a constitutive and variable spatiotemporal expression pattern of OsSAE1a in the vegetative and reproductive tissues and was comparable in the root and shoot grown under different Pi regimes. RNAi-mediated suppression of OsSAE1a exerted variable effects on the concentrations of Pi and total P in different tissues, uptake and distribution of 32Pi, and relative expression levels of several genes that play pivotal roles in the maintenance of Pi homeostasis. The effects of the mutation in OsSAE1a were also evident in the vegetative and reproductive traits of rice during growth in a hydroponic system and pot soil, respectively. Overall, these results suggest a broad-spectrum role of OsSAE1a in the maintenance of Pi homeostasis and regulating growth and development.


Subject(s)
Gene Expression Regulation, Plant/drug effects , Growth and Development/drug effects , Growth and Development/genetics , Homeostasis/drug effects , Oryza/growth & development , Oryza/genetics , Phosphates/metabolism , Gene Knockdown Techniques , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/metabolism
4.
J Plant Physiol ; 232: 51-60, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30530203

ABSTRACT

Small ubiquitin-related modifier (SUMO) is a post-translational modification of proteins that has important roles in plant growth and development as well as nutrition study. OsSIZ1, a SUMO E3 ligase in rice (Oryza sativa), exerts regulatory influence on nitrogen (N) homeostasis. Here, we investigated the biological function of OsSIZ2, a paralog of OsSIZ1, in the responses to nitrogen, anther dehiscence, and seed length using a reverse genetics approach. The expression of OsSIZ2 was increased during N deficiency. Under -N condition, total N concentration in the root of OsSIZ2-Ri plants and ossiz2 was significantly increased compared with wild type. Further, 15N-labelled uptake assay revealed the role of OsSIZ2 in acquisition and mobilization of N. Moreover, qRT-PCR analyses revealed that several genes involved in the maintenance of N homeostasis were altered in OsSIZ2 mutants. In addition, ossiz2 indicated obvious defects in anther dehiscence, pollen fertility, and seed set percentage. Interestingly, however, the seed length was longer in the mutant compared with wild type. Overall, these results suggest pivotal roles of OsSIZ2 in regulating homeostasis of N and different agronomic traits including anther and seed development.


Subject(s)
Genes, Plant/physiology , Homeostasis/genetics , Nitrogen/metabolism , Oryza/genetics , Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Homeostasis/physiology , Ligases/genetics , Ligases/physiology , Oryza/metabolism , Oryza/physiology , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/physiology , Real-Time Polymerase Chain Reaction , Reproduction/genetics , Reproduction/physiology , Seedlings/growth & development , Sumoylation
5.
Sci Rep ; 7(1): 12280, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28947784

ABSTRACT

OsSIZ1, a small ubiquitin-related modifier (SUMO) E3 ligase, exerts regulatory influences on the developmental responses and phosphate (Pi) homeostasis in rice (Oryza sativa). Whether paralogs OsSIZ1 and OsSIZ2 are functionally redundant or the latter regulates these traits independent of the former is not known. To determine this, in this study, OsSIZ2 was functionally characterized by employing reverse genetic approaches. Although the relative expression of OsSIZ2 was spatiotemporally regulated, it showed constitutive expression in root and leaf blade irrespective of Pi regime. Analysis of T-DNA insertion knockout (ossiz2) and RNAi-mediated knockdown (Ri1-3) mutants revealed positive influences on growth and developmental responses including yield-related traits. On the contrary, these mutants exhibited negative effects on the concentrations of Pi and total P in different tissues. The relative expression levels of some of the genes that are involved in Pi sensing and signaling cascades were differentially modulated in the mutants. Further, attenuation in the expression levels of OsSIZ2 in the roots of ossiz1 and relatively similar trend of the effects of the mutation in OsSIZ1 and OsSIZ2 on growth and development and total P concentration in different tissues suggested a prevalence of partial functional redundancy between these paralogs.


Subject(s)
Oryza/physiology , Phosphates/metabolism , Plant Proteins/physiology , Ubiquitin-Protein Ligases/physiology , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Gene Knockdown Techniques , Gene Knockout Techniques , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Plants, Genetically Modified , Sumoylation/physiology
6.
BMC Plant Biol ; 16(1): 210, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27716044

ABSTRACT

BACKGROUND: Phosphorus (P), an essential macronutrient, is often limiting in soils and affects plant growth and development. In Arabidopsis thaliana, Low Phosphate Root1 (LPR1) and its close paralog LPR2 encode multicopper oxidases (MCOs). They regulate meristem responses of root system to phosphate (Pi) deficiency. However, the roles of LPR gene family in rice (Oryza sativa) in maintaining Pi homeostasis have not been elucidated as yet. RESULTS: Here, the identification and expression analysis for the homologs of LPR1/2 in rice were carried out. Five homologs, hereafter referred to as OsLPR1-5, were identified in rice, which are distributed on chromosome1 over a range of 65 kb. Phylogenetic analysis grouped OsLPR1/3/4/5 and OsLPR2 into two distinct sub-clades with OsLPR3 and 5 showing close proximity. Quantitative real-time RT-PCR (qRT-PCR) analysis revealed higher expression levels of OsLPR3-5 and OsLPR2 in root and shoot, respectively. Deficiencies of different nutrients ie, P, nitrogen (N), potassium (K), magnesium (Mg) and iron (Fe) exerted differential and partially overlapping effects on the relative expression levels of the members of OsLPR family. Pi deficiency (-P) triggered significant increases in the relative expression levels of OsLPR3 and 5. Strong induction in the relative expression levels of OsLPR3 and 5 in osphr2 suggested their negative transcriptional regulation by OsPHR2. Further, the expression levels of OsLPR3 and 5 were either attenuated in ossiz1 and ospho2 or augmented in rice overexpressing OsSPX1. CONCLUSIONS: The results from this study provided insights into the evolutionary expansion and a likely functional divergence of OsLPR family with potential roles of OsLPR3 and 5 in the maintenance of Pi homeostasis in rice.


Subject(s)
Oryza/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Gene Expression Regulation, Plant , Homeostasis , Nitrogen/metabolism , Oryza/genetics , Phylogeny , Plant Proteins/genetics , Sequence Alignment
7.
Plant Cell Physiol ; 56(12): 2381-95, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26615033

ABSTRACT

SIZ1-mediated SUMOylation regulates hormone signaling as well as abiotic and biotic stress responses in plants. Here, we investigated the expression profile of OsSIZ1 in rice using quantitative reverse transcription-PCR (qRT-PCR) and pOsSIZ1-GUS transgenic plants, and the function of OsSIZ1 in the responses to phosphate and nitrogen using a reverse genetics approach. OsSIZ1 is constitutively expressed throughout the vegetative and reproductive growth of rice, with stronger promoter activities in vascular bundles of culms. ossiz1 mutants had shorter primary roots and adventitious roots than wild-type plants, suggesting that OsSIZ1 is associated with the regulation of root system architecture. Total phosphorus (P) and phosphate (Pi) concentrations in both roots and shoots of ossiz1 mutants were significantly increased irrespective of Pi supply conditions compared with the wild type. Pi concentration in the xylem sap of ossiz1 mutants was significantly higher than that of the wild type under a Pi-sufficient growth regime. Total nitrogen (N) concentrations in the most detected tissues of ossiz1 mutants were significantly increased compared with the wild type. Analysis of mineral contents in ossiz1 mutants indicated that OsSIZ1 functions specifically in Pi and N responses, not those of other nutrients examined, in rice. Further, qRT-PCR analyses revealed that the expression of multiple genes involved in Pi starvation signaling and N transport and assimilation were altered in ossiz1 mutants. Together, these results suggested that OsSIZ1 may act as a regulator of the Pi (N)-dependent responses in rice.


Subject(s)
Genes, Plant , Nitrogen/pharmacology , Oryza/enzymology , Oryza/genetics , Phosphates/pharmacology , Plant Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Mutation/genetics , Oryza/drug effects , Oryza/growth & development , Phosphorus/metabolism , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Proteins/metabolism , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Shoots/drug effects , Plant Shoots/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Ubiquitin-Protein Ligases/metabolism
8.
Plant J ; 82(4): 556-69, 2015 May.
Article in English | MEDLINE | ID: mdl-25702710

ABSTRACT

Phosphate (Pi) transporters mediate acquisition and transportation of Pi within plants. Here, we investigated the functions of OsPht1;4 (OsPT4), one of the 13 members of the Pht1 family in rice. Quantitative real-time RT-PCR analysis revealed strong expression of OsPT4 in roots and embryos, and OsPT4 promoter analysis using reporter genes confirmed these findings. Analysis using rice protoplasts showed that OsPT4 localized to the plasma membrane. OsPT4 complemented a yeast mutant defective in Pi uptake, and also facilitated increased accumulation of Pi in Xenopus oocytes. Further, OsPT4 genetically modified (GM) rice lines were generated by knockout/knockdown or over-expression of OsPT4. Pi concentrations in roots and shoots were significantly lower and higher in knockout/knockdown and over-expressing plants, respectively, compared to wild-type under various Pi regimes. (33) Pi uptake translocation assays corroborated the altered acquisition and mobilization of Pi in OsPT4 GM plants. We also observed effects of altered expression levels of OsPT4 in GM plants on the concentration of Pi, the size of the embryo, and several attributes related to seed development. Overall, our results suggest that OsPT4 encodes a plasma membrane-localized Pi transporter that facilitates acquisition and mobilization of Pi, and also plays an important role in development of the embryo in rice.


Subject(s)
Oryza/metabolism , Phosphate Transport Proteins/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Molecular Sequence Data , Oryza/genetics , Phosphate Transport Proteins/genetics , Plant Proteins/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...