Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000392

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific disorder associated with shallow invasion of the trophoblast cells and insufficient remodeling of the uterine spiral artery. Protein glycosylation plays an important role in trophoblast cell invasion. However, the glycobiological mechanism of PE has not been fully elucidated. In the current study, employing the Lectin array, we found that soybean agglutinin (SBA), which recognizes the terminal N-acetylgalactosamine α1,3-galactose (GalNAc α1,3 Gal) glycotype, was significantly increased in placental trophoblast cells from PE patients compared with third-trimester pregnant controls. Upregulating the expression of the key enzyme α1,3 N-acetylgalactosaminyl transferase (GTA) promoted the biosynthesis of terminal GalNAc α1,3 Gal and inhibited the migration/invasion of HTR8/SVneo trophoblast cells. Moreover, the methylation status of GTA promoter in placental tissues from PE patients was lower than that in the third trimester by methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) analysis. Elevated GTA expression in combination with the DNA methylation inhibitor 5-azacytidine (5-AzaC) treatment increased the glycotype biosynthesis and impaired the invasion potential of trophoblast cells, leading to preeclampsia. This study suggests that elevated terminal GalNAc α1,3 Gal biosynthesis and GTA expression may be applied as the new markers for evaluating placental function and the auxiliary diagnosis of preeclampsia.


Subject(s)
Cell Movement , N-Acetylgalactosaminyltransferases , Pre-Eclampsia , Trophoblasts , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Trophoblasts/metabolism , Trophoblasts/pathology , Female , Pregnancy , N-Acetylgalactosaminyltransferases/metabolism , N-Acetylgalactosaminyltransferases/genetics , Adult , DNA Methylation , Promoter Regions, Genetic , Cell Line , Placenta/metabolism
2.
Cells ; 11(19)2022 10 06.
Article in English | MEDLINE | ID: mdl-36231102

ABSTRACT

Peritoneal metastasis is the main cause of poor prognoses and high mortality in ovarian cancer patients. Abnormal protein glycosylation modification is associated with cancer malignancy. Elevated α1,3-mannosyltransferase 3 (ALG3), which catalyzes the α1,3-mannosylation of glycoproteins, has been found in some malignant tumors. However, the pathological significance of ALG3 and its regulatory mechanism in ovarian cancer metastasis is unclear. The results showed that the level of ALG3/α1,3-mannosylation was higher in human ovarian cancer tissues compared with normal ovarian tissues, as measured by Lectin chip, Western blot and Lectin blot analyses, as well as ovarian tissue microarray analysis. ALG3 was also correlated with the poor prognosis of ovarian cancer patients, according to survival analysis. The downregulation of ALG3 decreased the proliferation, stemness and peritoneal metastasis of ovarian cancer cells. The increase in urokinase plasminogen activator receptor (uPAR) α1,3-mannosylation catalyzed by ALG3 enhanced urokinase plasminogen activator (uPA)/uPAR activation and the interaction of uPAR with a disintegrin and metalloproteinase 8 (ADAM8), which promoted ovarian cancer peritoneal metastasis via the ADAM8/Ras/ERK pathway. Furthermore, decreased ALG3 suppressed ascites formation and the peritoneal metastasis of ovarian cancer cells in mice. This study highlights ALG3 as a potential diagnostic biomarker and prospective therapeutic target for ovarian cancer.


Subject(s)
Ovarian Neoplasms , Peritoneal Neoplasms , ADAM Proteins/metabolism , Animals , Antigens, CD , Biomarkers/metabolism , Carcinoma, Ovarian Epithelial , Disintegrins/metabolism , Female , Glycosylation , Humans , Lectins/metabolism , Mannosyltransferases/metabolism , Membrane Proteins/metabolism , Mice , Ovarian Neoplasms/pathology , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL