Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Sci Rep ; 13(1): 21846, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071261

ABSTRACT

Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.


Subject(s)
COVID-19 , Coronavirus OC43, Human , Middle East Respiratory Syndrome Coronavirus , Child , Humans , SARS-CoV-2 , Immunity, Humoral , COVID-19/diagnosis , COVID-19/epidemiology , Immunoglobulin G , Antibodies, Viral
2.
J Clin Virol ; 165: 105496, 2023 08.
Article in English | MEDLINE | ID: mdl-37269606

ABSTRACT

BACKGROUND/PURPOSE: While current guidelines recommend the use of respiratory tract specimens for the direct detection of SARS-CoV-2 infection, saliva has recently been suggested as preferred sample type for the sensitive detection of SARS-CoV-2 B.1.1.529 (Omicron). By comparing saliva collected using buccal swabs and oro-/nasopharyngeal swabs from patients hospitalized due to COVID-19, we aimed at identifying potential differences in virus detection sensitivity between these sample types. METHODS: We compare the clinical diagnostic sensitivity of paired buccal swabs and combined oro-/nasopharyngeal swabs from hospitalized, symptomatic COVID-19 patients collected at median six days after symptom onset by real-time polymerase chain reaction (PCR) and antigen test. RESULTS: Of the tested SARS-CoV-2 positive sample pairs, 55.8% were identified as SARS-CoV-2 Omicron BA.1 and 44.2% as Omicron BA.2. Real-time PCR from buccal swabs generated significantly higher quantification cycle (Cq) values compared to those from matched combined oro-/nasopharyngeal swabs and resulted in an increased number of false-negative PCR results. Reduced diagnostic sensitivity of buccal swabs by real-time PCR was observed already at day one after symptom onset. Similarly, antigen test detection rates were reduced in buccal swabs compared to combined oro-/nasopharyngeal swabs. CONCLUSION: Our results suggest reduced clinical diagnostic sensitivity of saliva collected using buccal swabs when compared to combined oro-/nasopharyngeal swabs in the detection of SARS-CoV-2 Omicron in symptomatic individuals.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Saliva , Real-Time Polymerase Chain Reaction , Nasopharynx , Specimen Handling , COVID-19 Testing
3.
Infection ; 51(4): 1093-1102, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36913112

ABSTRACT

PURPOSE: COViK, a prospective hospital-based multicenter case-control study in Germany, aims to assess the effectiveness of COVID-19 vaccines against severe disease. Here, we report vaccine effectiveness (VE) against COVID-19-caused hospitalization and intensive care treatment during the Omicron wave. METHODS: We analyzed data from 276 cases with COVID-19 and 494 control patients recruited in 13 hospitals from 1 December 2021 to 5 September 2022. We calculated crude and confounder-adjusted VE estimates. RESULTS: 21% of cases (57/276) were not vaccinated, compared to 5% of controls (26/494; p < 0.001). Confounder-adjusted VE against COVID-19-caused hospitalization was 55.4% (95% CI: 12-78%), 81.5% (95% CI: 68-90%) and 95.6% (95%CI: 88-99%) after two, three and four vaccine doses, respectively. VE against hospitalization due to COVID-19 remained stable up to one year after three vaccine doses. CONCLUSION: Three vaccine doses remained highly effective in preventing severe disease and this protection was sustained; a fourth dose further increased protection.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Case-Control Studies , Prospective Studies , Vaccine Efficacy , Germany/epidemiology
4.
Vaccine ; 41(2): 290-293, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36509640

ABSTRACT

We included 852 patients in a prospectively recruiting multicenter matched case-control study in Germany to assess vaccine effectiveness (VE) in preventing COVID-19-associated hospitalization during the Delta-variant dominance. The two-dose VE was 89 % (95 % CI 84-93 %) overall, 79 % in patients with more than two comorbidities and 77 % in adults aged 60-75 years. A third dose increased the VE to more than 93 % in all patient-subgroups.


Subject(s)
COVID-19 , Vaccines , Adult , Humans , Case-Control Studies , COVID-19/prevention & control , Hospitalization , Hospitals , Germany/epidemiology
5.
Article in German | MEDLINE | ID: mdl-36355192

ABSTRACT

Vaccines against COVID-19 have been available in Germany since December 2020. At the Robert Koch Institute (RKI), the Immunization Unit is responsible for monitoring vaccination coverage and assessment of vaccine effectiveness. This article provides an overview of the respective reporting structures, vaccination databases, and epidemiological studies established by the Immunization Unit during the COVID-19 pandemic. We describe the COVID-19 Digital Vaccination Coverage Monitoring (DIM), which provides daily updates on vaccination coverage by age group. We next describe how, based on the DIM data and COVID-19 case data, the assessment of vaccine effectiveness against different clinical endpoints (hospitalization, intensive care, death) is performed. While this method is used for a preliminary estimate of vaccine efficacy, population-based nonrandomized studies are able to provide more precise and detailed estimates under "real-world" conditions. In this context, we describe the hospital-based case-control study COViK, which is being conducted in collaboration with the Paul Ehrlich Institute (PEI). We discuss strengths and limitations of the abovementioned structures and tools. Finally, we provide an outlook on future challenges that may arise during the ongoing pandemic and during the transition phase into an endemic situation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Pandemics/prevention & control , Case-Control Studies , Germany/epidemiology , Vaccination
6.
Front Immunol ; 13: 928018, 2022.
Article in English | MEDLINE | ID: mdl-36052070

ABSTRACT

Selective differentiation of CD4+ T helper (Th) cells into specialized subsets such as Th1 and Th2 cells is a key element of the adaptive immune system driving appropriate immune responses. Besides those canonical Th-cell lineages, hybrid phenotypes such as Th1/2 cells arise in vivo, and their generation could be reproduced in vitro. While master-regulator transcription factors like T-bet for Th1 and GATA-3 for Th2 cells drive and maintain differentiation into the canonical lineages, the transcriptional architecture of hybrid phenotypes is less well understood. In particular, it has remained unclear whether a hybrid phenotype implies a mixture of the effects of several canonical lineages for each gene, or rather a bimodal behavior across genes. Th-cell differentiation is a dynamic process in which the regulatory factors are modulated over time, but longitudinal studies of Th-cell differentiation are sparse. Here, we present a dynamic transcriptome analysis following Th-cell differentiation into Th1, Th2, and Th1/2 hybrid cells at 3-h time intervals in the first hours after stimulation. We identified an early bifurcation point in gene expression programs, and we found that only a minority of ~20% of Th cell-specific genes showed mixed effects from both Th1 and Th2 cells on Th1/2 hybrid cells. While most genes followed either Th1- or Th2-cell gene expression, another fraction of ~20% of genes followed a Th1 and Th2 cell-independent transcriptional program associated with the transcription factors STAT1 and STAT4. Overall, our results emphasize the key role of high-resolution longitudinal data for the characterization of cellular phenotypes.


Subject(s)
Th1 Cells , Th2 Cells , Cell Differentiation/genetics , Hybrid Cells , Lymphocyte Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...