Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(1): 113608, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38117649

ABSTRACT

The role of hematopoietic Hedgehog signaling in myeloproliferative neoplasms (MPNs) remains incompletely understood despite data suggesting that Hedgehog (Hh) pathway inhibitors have therapeutic activity in patients. We aim to systematically interrogate the role of canonical vs. non-canonical Hh signaling in MPNs. We show that Gli1 protein levels in patient peripheral blood mononuclear cells (PBMCs) mark fibrotic progression and that, in murine MPN models, absence of hematopoietic Gli1, but not Gli2 or Smo, significantly reduces MPN phenotype and fibrosis, indicating that GLI1 in the MPN clone can be activated in a non-canonical fashion. Additionally, we establish that hematopoietic Gli1 has a significant effect on stromal cells, mediated through a druggable MIF-CD74 axis. These data highlight the complex interplay between alterations in the MPN clone and activation of stromal cells and indicate that Gli1 represents a promising therapeutic target in MPNs, particularly that Hh signaling is dispensable for normal hematopoiesis.


Subject(s)
Antineoplastic Agents , Myeloproliferative Disorders , Neoplasms , Humans , Mice , Animals , Hedgehog Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , Leukocytes, Mononuclear/metabolism , Hematopoiesis
2.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38000021

ABSTRACT

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Subject(s)
Heart Failure , Renal Insufficiency, Chronic , Mice , Animals , Humans , Tumor Necrosis Factor-alpha/genetics , Uremic Toxins , Ventricular Remodeling , Heart Failure/etiology
3.
Cell Rep ; 42(2): 112131, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36807143

ABSTRACT

Fibrosis represents the common end stage of chronic organ injury independent of the initial insult, destroying tissue architecture and driving organ failure. Here we discover a population of profibrotic macrophages marked by expression of Spp1, Fn1, and Arg1 (termed Spp1 macrophages), which expands after organ injury. Using an unbiased approach, we identify the chemokine (C-X-C motif) ligand 4 (CXCL4) to be among the top upregulated genes during profibrotic Spp1 macrophage differentiation. In vitro and in vivo studies show that loss of Cxcl4 abrogates profibrotic Spp1 macrophage differentiation and ameliorates fibrosis after both heart and kidney injury. Moreover, we find that platelets, the most abundant source of CXCL4 in vivo, drive profibrotic Spp1 macrophage differentiation. Single nuclear RNA sequencing with ligand-receptor interaction analysis reveals that macrophages orchestrate fibroblast activation via Spp1, Fn1, and Sema3 crosstalk. Finally, we confirm that Spp1 macrophages expand in both human chronic kidney disease and heart failure.


Subject(s)
Macrophages , Myofibroblasts , Humans , Fibrosis , Ligands , Macrophages/metabolism , Myofibroblasts/metabolism , Osteopontin , Platelet Factor 4/genetics , Platelet Factor 4/metabolism
4.
Nat Genet ; 54(11): 1690-1701, 2022 11.
Article in English | MEDLINE | ID: mdl-36303074

ABSTRACT

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.


Subject(s)
Cysts , Polycystic Kidney, Autosomal Dominant , Adult , Humans , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics , Organoids , Kidney , CD24 Antigen/genetics
5.
Nature ; 608(7924): 766-777, 2022 08.
Article in English | MEDLINE | ID: mdl-35948637

ABSTRACT

Myocardial infarction is a leading cause of death worldwide1. Although advances have been made in acute treatment, an incomplete understanding of remodelling processes has limited the effectiveness of therapies to reduce late-stage mortality2. Here we generate an integrative high-resolution map of human cardiac remodelling after myocardial infarction using single-cell gene expression, chromatin accessibility and spatial transcriptomic profiling of multiple physiological zones at distinct time points in myocardium from patients with myocardial infarction and controls. Multi-modal data integration enabled us to evaluate cardiac cell-type compositions at increased resolution, yielding insights into changes of the cardiac transcriptome and epigenome through the identification of distinct tissue structures of injury, repair and remodelling. We identified and validated disease-specific cardiac cell states of major cell types and analysed them in their spatial context, evaluating their dependency on other cell types. Our data elucidate the molecular principles of human myocardial tissue organization, recapitulating a gradual cardiomyocyte and myeloid continuum following ischaemic injury. In sum, our study provides an integrative molecular map of human myocardial infarction, represents an essential reference for the field and paves the way for advanced mechanistic and therapeutic studies of cardiac disease.


Subject(s)
Atrial Remodeling , Chromatin Assembly and Disassembly , Gene Expression Profiling , Myocardial Infarction , Single-Cell Analysis , Ventricular Remodeling , Atrial Remodeling/genetics , Case-Control Studies , Chromatin/genetics , Epigenome , Humans , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Time Factors , Ventricular Remodeling/genetics
6.
Nat Commun ; 13(1): 3027, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35641541

ABSTRACT

The cardiac vascular and perivascular niche are of major importance in homeostasis and during disease, but we lack a complete understanding of its cellular heterogeneity and alteration in response to injury as a major driver of heart failure. Using combined genetic fate tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast, endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a regulator of fibroblast activation. Endothelial cells display a proliferative response after injury, which is not sustained in later remodeling, together with transcriptional changes related to hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.


Subject(s)
Endothelial Cells , Heart Failure , Endothelial Cells/metabolism , Fibroblasts/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Humans , Myocytes, Smooth Muscle/metabolism , Pericytes/metabolism
9.
Cell Stem Cell ; 20(6): 785-800.e8, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28457748

ABSTRACT

Bone marrow fibrosis (BMF) develops in various hematological and non-hematological conditions and is a central pathological feature of myelofibrosis. Effective cell-targeted therapeutics are needed, but the cellular origin of BMF remains elusive. Here, we show using genetic fate tracing in two murine models of BMF that Gli1+ mesenchymal stromal cells (MSCs) are recruited from the endosteal and perivascular niche to become fibrosis-driving myofibroblasts in the bone marrow. Genetic ablation of Gli1+ cells abolished BMF and rescued bone marrow failure. Pharmacological targeting of Gli proteins with GANT61 inhibited Gli1+ cell expansion and myofibroblast differentiation and attenuated fibrosis severity. The same pathway is also active in human BMF, and Gli1 expression in BMF significantly correlates with the severity of the disease. In addition, GANT61 treatment reduced the myofibroblastic phenotype of human MSCs isolated from patients with BMF, suggesting that targeting of Gli proteins could be a relevant therapeutic strategy.


Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Mesenchymal Stem Cells/metabolism , Myofibroblasts/metabolism , Primary Myelofibrosis/drug therapy , Pyridines/pharmacology , Pyrimidines/pharmacology , Zinc Finger Protein GLI1/antagonists & inhibitors , Animals , Cell Differentiation/genetics , Humans , Mesenchymal Stem Cells/pathology , Mice , Mice, Transgenic , Myofibroblasts/pathology , Primary Myelofibrosis/genetics , Primary Myelofibrosis/metabolism , Primary Myelofibrosis/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
10.
Cancer Discov ; 6(4): 368-81, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26951227

ABSTRACT

UNLABELLED: Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN), but the mechanism by which mutant CALR is oncogenic remains unclear. Here, we demonstrate that expression of mutant CALR alone is sufficient to engender MPN in mice and recapitulates the disease phenotype of patients with CALR-mutant MPN. We further show that the thrombopoietin receptor MPL is required for mutant CALR-driven transformation through JAK-STAT pathway activation, thus rendering mutant CALR-transformed hematopoietic cells sensitive to JAK2 inhibition. Finally, we demonstrate that the oncogenicity of mutant CALR is dependent on the positive electrostatic charge of the C-terminus of the mutant protein, which is necessary for physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel paradigm of cancer pathogenesis and reveal how CALR mutations induce MPN. SIGNIFICANCE: The mechanism by which CALR mutations induce MPN remains unknown. In this report, we show that the positive charge of the CALR mutant C-terminus is necessary to transform hematopoietic cells by enabling binding between mutant CALR and the thrombopoietin receptor MPL.


Subject(s)
Calreticulin/genetics , Cell Transformation, Neoplastic/genetics , Mutation , Protein Interaction Domains and Motifs/genetics , Receptors, Thrombopoietin/genetics , Animals , Base Sequence , Bone Marrow Transplantation , Calreticulin/chemistry , Calreticulin/metabolism , Cell Line , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Female , Frameshift Mutation , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/pathology , Humans , Janus Kinases/antagonists & inhibitors , Janus Kinases/metabolism , Mice , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/metabolism , Myeloproliferative Disorders/pathology , Phenotype , Protein Binding , Protein Kinase Inhibitors/pharmacology , Receptors, Thrombopoietin/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Structure Collapse
SELECTION OF CITATIONS
SEARCH DETAIL
...