Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Front Oncol ; 14: 1304690, 2024.
Article in English | MEDLINE | ID: mdl-38634051

ABSTRACT

The main objective of the National Project for Research and Incidence of Childhood Leukemias is to reduce early mortality rates for these neoplasms in the vulnerable regions of Mexico. This project was conducted in the states of Oaxaca, Puebla, and Tlaxcala. A key strategy of the project is the implementation of an effective roadmap to ensure that leukemia patients are the target of maximum benefit of interdisciplinary collaboration between researchers, clinicians, surveyors, and laboratories. This strategy guarantees the comprehensive management of diagnosis and follow-up samples of pediatric patients with leukemia, centralizing, managing, and analyzing the information collected. Additionally, it allows for a precise diagnosis and monitoring of the disease through immunophenotype and measurable residual disease (MRD) studies, enhancing research and supporting informed clinical decisions for the first time in these regions through a population-based study. This initiative has significantly improved the diagnostic capacity of leukemia in girls, boys, and adolescents in the regions of Oaxaca, Puebla, and Tlaxcala, providing comprehensive, high-quality care with full coverage in the region. Likewise, it has strengthened collaboration between health institutions, researchers, and professionals in the sector, which contributes to reducing the impact of the disease on the community.

2.
Viruses ; 16(3)2024 02 28.
Article in English | MEDLINE | ID: mdl-38543739

ABSTRACT

The absence of tumor-infiltrating lymphocytes negatively impacts the response to chemotherapy and prognosis in all subtypes of breast cancer. Therapies that stimulate a proinflammatory environment may help improve the response to standard treatments and also to immunotherapies such as checkpoint inhibitors. Newcastle disease virus (NDV) shows oncolytic activity, as well as immune modulating potential, in the treatment of breast cancer in vitro and in vivo; however, its potential to enhance tumor-infiltrating immune cells in breast cancer has yet to be evaluated. Since spontaneous canine mammary tumors represent a translational model of human breast cancer, we conducted this proof-of-concept study, which could provide a rationale for further investigating NDV-MLS as immunotherapy for mammary cancer. Six female companion dogs with spontaneous mammary cancer received a single intravenous and intratumoral injection of oncolytic NDV-MLS. Immune cell infiltrates were evaluated by histology and immunohistochemistry in the stromal, intratumoral, and peritumoral compartments on day 6 after viral administration. Increasing numbers of immune cells were documented post-viral treatment, mainly in the peritumoral compartment, where plasma cells and CD3+ and CD3-/CD79- lymphocytes predominated. Viral administration was well tolerated, with no significant adverse events. These findings support additional research on the use of NDV-MLS immunotherapy for mammary cancer.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Female , Dogs , Newcastle disease virus/physiology , Pets , Oncolytic Viruses/physiology , Immunotherapy , Cell Line, Tumor , Neoplasms/therapy
3.
Front Oncol ; 14: 1304605, 2024.
Article in English | MEDLINE | ID: mdl-38444670

ABSTRACT

Introduction: The mechanistic/mammalian target of rapamycin (mTOR) is a serine/threonine kinase, which is downregulated or upregulated and is implicated in different types of cancer including hematologic neoplasms, skin prostate, and head and neck cancer. Aim: The aim of this study was to explore the current knowledge of mTOR signaling in acute lymphoblastic leukemia and Hodgkin lymphoma. Methods: A systematic review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, searching PubMed, Discovery Service for National Autonomous University of Mexico, Registro Nacional de Instituciones y Empresas Científicas y Tecnológicas (RENIECYT), and Scientific Electronic Library Online (SciELO) from 1994 to 2023. A total of 269 papers were identified for acute lymphoblastic leukemia, but based on specific criteria, 15 were included; for Hodgkin lymphoma, 110 papers were identified, but 5 were included after manual searching. Results: A total of 20 papers were evaluated, where mTOR activity is increased in patients with Hodgkin lymphoma and acute lymphoblastic leukemia by different molecular mechanisms. Conclusions: mTOR activity is increased in patients with both hematologic neoplasms and NOTCH; interleukin 4, 7, and 9, and nuclear proteins have been studied for their role in the activation of mTOR signaling.

4.
Front Oncol ; 14: 1304263, 2024.
Article in English | MEDLINE | ID: mdl-38444682

ABSTRACT

Introduction: Acute leukemias (AL) are the main types of cancer in children worldwide. In Mexico, they represent one of the main causes of death in children under 20 years of age. Most of the studies on the incidence of AL in Mexico have been developed in the urban context of Greater Mexico City and no previous studies have been conducted in the central-south of the country through a population-based study. The aim of the present work was to identify the general and specific incidence rates of pediatric AL in three states of the south-central region of Mexico considered as some of the marginalized populations of Mexico (Puebla, Tlaxcala, and Oaxaca). Methods: A population-based study was conducted. Children aged less than 20 years, resident in these states, and newly diagnosed with AL in public/private hospitals during the period 2021-2022 were identified. Crude incidence rates (cIR), standardized incidence rates (ASIRw), and incidence rates by state subregions (ASIRsr) were calculated. Rates were calculated using the direct and indirect method and reported per million children under 20 years of age. In addition, specific rates were calculated by age group, sex, leukemia subtype, and immunophenotype. Results: A total of 388 cases with AL were registered. In the three states, the ASIRw for AL was 51.5 cases per million (0-14 years); in Puebla, it was 53.2, Tlaxcala 54.7, and Oaxaca de 47.7. In the age group between 0-19 years, the ASIRw were 44.3, 46.4, 48.2, and 49.6, in Puebla, Tlaxcala, and Oaxaca, respectively. B-cell acute lymphoblastic leukemia was the most common subtype across the three states. Conclusion: The incidence of childhood AL in the central-south region of Mexico is within the range of rates reported in other populations of Latin American origin. Two incidence peaks were identified for lymphoblastic and myeloid leukemias. In addition, differences in the incidence of the disease were observed among state subregions which could be attributed to social factors linked to the ethnic origin of the inhabitants. Nonetheless, this hypothesis requires further investigation.

5.
Open Forum Infect Dis ; 11(2): ofad690, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370296

ABSTRACT

Background: Fungal meningitis can be associated with epidural anesthesia procedures. Fusariosis is a rare infection typically affecting immunocompromised patients and rarely causes meningitis. During 2022-2023, public health officials responded to a large outbreak of Fusarium solani meningitis associated with epidural anesthesia in Durango, Mexico. Methods: The public health response and epidemiological and clinical features of patients affected by this outbreak were described. Coordinated actions were addressed to identify the etiological agent, determine its drug susceptibility, develop diagnostic tests, and implement clinical and epidemiological protocols. Retrospective analyses of clinical variables and outcomes were performed to determine association with better patient survival. Results: A total of 1801 persons exposed to epidural anesthesia were identified, of whom 80 developed meningitis. Fusarium solani was found in 3 brain biopsies and showed susceptibility to voriconazole and amphotericin B. After F solani polymerase chain reaction (PCR) implementation, 57 patients with meningitis were PCR-screened, and 31 (38.8%) had a positive result. Most patients were female (95%), and cesarean section was the most common surgical procedure (76.3%). The case fatality rate was 51.3% (41 patients) and the median hospitalization duration was 39.5 days (interquartile range, 18-86 days). Seventy-one patients (88.8%) received voriconazole/amphotericin B and 64 subjects (80%) additionally received steroids. Cox regression analysis showed an increased lethality risk in patients who received antifungal treatment after 5 days (hazard ratio, 2.1 [95% confidence interval, 1.01-4.48], P < .05). Conclusions: The F solani meningitis outbreak in Durango was an unprecedented medical challenge. Timely treatment and effective healthcare management were associated with better survival outcomes.

6.
Vaccines (Basel) ; 11(11)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-38006008

ABSTRACT

During 2020-2023, Mexico had a large COVID-19 emergency with >331,000 adult deaths and one of the highest excess mortalities worldwide. Age at COVID-19 death has been lower in Mexico than in high-income countries, presumably because of the young demographics and high prevalence of chronic metabolic diseases in young and middle-aged adults. SARS-CoV-2 vaccination covered 85% of adults with at least one dose and 50% with booster(s) up to April 2022. No new vaccination efforts or updated boosters were introduced until October 2023; thus, we explored the public health impact of massive SARS-CoV-2 vaccination against ancestral strains and asked whether their real-world protection has persisted through time. We compared three periods with respect to vaccine roll-outs: before, during and after vaccine introduction in a national retrospective cohort of >7.5 million COVID-19 cases. The main findings were that after vaccination, COVID-19 mortality decreased, age at COVID-19 death increased by 5-10 years, both in populations with and without comorbidities; obesity stopped being a significant risk factor for COVID-19 death and protection against severe disease persisted for a year after boosters, including at ages 60-79 and 80+. Middle-aged adults had the highest protection from vaccines/hybrid immunity and they more than halved their proportions in COVID-19 deaths.

7.
J Leukoc Biol ; 114(6): 672-683, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37820030

ABSTRACT

Neutrophils infiltrate several types of cancer; however, whether their presence is associated with disease progression remains controversial. Here, we show that colon tumors overexpress neutrophil chemoattractants compared to healthy tissues, leading to their recruitment to the invasive margin and the central part of colon tumors. Of note, tumor-associated neutrophils expressing tumor necrosis factor α, which usually represents an antitumoral phenotype, were predominantly located in the invasive margin. Tumor-associated neutrophils from the invasive margin displayed an antitumoral phenotype with higher ICAM-1 and CD95 expression than neutrophils from healthy adjacent tissues. A higher neutrophil/lymphocyte ratio was found at later stages compared to the early phases of colon cancer. A neutrophil/lymphocyte ratio ≤3.5 predicted tumor samples had significantly more neutrophils at the invasive margin and the central part. Moreover, tumor-associated neutrophils at the invasive margin of early-stage tumors showed higher ICAM-1 and CD95 expression. Coculture of colon cancer cell lines with primary neutrophils induced ICAM-1 and CD95 expression, confirming our in situ findings. Thus, our data demonstrate that tumor-associated neutrophils with an antitumoral phenotype characterized by high ICAM-1 and CD95 expression infiltrate the invasive margin of early-stage colon tumors, suggesting that these cells can combat the disease at its early courses. The presence of tumor-associated neutrophils with antitumoral phenotype could help predict outcomes of patients with colon cancer.


Subject(s)
Colonic Neoplasms , Neutrophils , Humans , Neutrophils/metabolism , Intercellular Adhesion Molecule-1/metabolism , Colonic Neoplasms/pathology , Phenotype
8.
Clin Transl Sci ; 16(12): 2687-2699, 2023 12.
Article in English | MEDLINE | ID: mdl-37873554

ABSTRACT

The difficulty in predicting fatal outcomes in patients with coronavirus disease 2019 (COVID-19) impacts the general morbidity and mortality due to severe acute respiratory syndrome-coronavirus 2 infection, as it wears out the hospital services that care for these patients. Unfortunately, in several of the candidates for prognostic biomarkers proposed, the predictive power is compromised when patients have pre-existing comorbidities. A cohort of 147 patients hospitalized for severe COVID-19 was included in a descriptive, observational, single-center, and prospective study. Patients were recruited during the first COVID-19 pandemic wave (April-November 2020). Data were collected from the clinical history whereas immunophenotyping by multiparameter flow cytometry analysis allowed us to assess the expression of surface markers on peripheral leucocyte. Patients were grouped according to the outcome in survivors or non-survivors. The prognostic value of leucocyte, cytokines or HLA-DR, CD39, and CD73 was calculated. Hypertension and chronic renal failure but not obesity and diabetes were conditions more frequent among the deceased patient group. Mixed hypercytokinemia, including inflammatory (IL-6) and anti-inflammatory (IL-10) cytokines, was more evident in deceased patients. In the deceased patient group, lymphopenia with a higher neutrophil-lymphocyte ratio (NLR) value was present. HLA-DR expression and the percentage of CD39+ cells were higher than non-COVID-19 patients but remained similar despite the outcome. Receiver operating characteristic analysis and cutoff value of NLR (69.6%, 9.4), percentage NLR (pNLR; 71.1%, 13.6), and IL-6 (79.7%, 135.2 pg/mL). The expression of HLA-DR, CD39, and CD73, as many serum cytokines (other than IL-6) and chemokines levels do not show prognostic potential, were compared to NLR and pNLR values.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Prospective Studies , Interleukin-6 , Pandemics , Prognosis , Biomarkers , Neutrophils , HLA-DR Antigens , Retrospective Studies
9.
J Leukoc Biol ; 114(5): 381-383, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37607260

ABSTRACT

Leukemia stem cells are known to drive tumor progression, drug resistance, microenvironmental shift, and relapse, which would make them a perfect therapeutic target. However, their phenotypic and functional similarity to their normal counterparts leaves limited road maps for their selective elimination. Tremblay et al. recently unraveled the fundamental role of overactivated pSTAT5 as a functional marker of early T cell precursor acute lymphoblastic leukemia stem cells driving leukemic progression and highlighted its potential use as a therapeutic target to prevent fatal outcomes.


Subject(s)
Precursor Cells, T-Lymphoid , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , STAT5 Transcription Factor/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Stem Cells/metabolism , Precursor Cells, T-Lymphoid/metabolism , Precursor Cells, T-Lymphoid/pathology
10.
J Leukoc Biol ; 114(5): 404-420, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37386890

ABSTRACT

Blood cell formation (hematopoiesis) takes place mainly in the bone marrow, within the hematopoietic microenvironment, composed of a number of different cell types and their molecular products that together shape spatially organized and highly specialized microstructures called hematopoietic niches. From the earliest developmental stages and throughout the myeloid and lymphoid lineage differentiation pathways, hematopoietic niches play a crucial role in the preservation of cellular integrity and the regulation of proliferation and differentiation rates. Current evidence suggests that each blood cell lineage develops under specific, discrete niches that support committed progenitor and precursor cells and potentially cooperate with transcriptional programs determining the gradual lineage commitment and specification. This review aims to discuss recent advances on the cellular identity and structural organization of lymphoid, granulocytic, monocytic, megakaryocytic, and erythroid niches throughout the hematopoietic microenvironment and the mechanisms by which they interconnect and regulate viability, maintenance, maturation, and function of the developing blood cells.


Subject(s)
Bone Marrow , Hematopoietic Stem Cells , Cell Lineage , Bone Marrow/metabolism , Cell Differentiation , Hematopoiesis , Bone Marrow Cells
11.
Front Oncol ; 13: 1304662, 2023.
Article in English | MEDLINE | ID: mdl-38250553

ABSTRACT

Introduction: The decisive key to disease-free survival in B-cell precursor acute lymphoblastic leukemia in children, is the combination of diagnostic timeliness and treatment efficacy, guided by accurate patient risk stratification. Implementation of standardized and high-precision diagnostic/prognostic systems is particularly important in the most marginalized geographic areas in Mexico, where high numbers of the pediatric population resides and the highest relapse and early death rates due to acute leukemias are recorded even in those cases diagnosed as standard risk. Methods: By using a multidimensional and integrated analysis of the immunophenotype of leukemic cells, the immunological context and the tumor microenvironment, this study aim to capture the snapshot of acute leukemia at disease debut of a cohort of Mexican children from vulnerable regions in Puebla, Oaxaca and Tlaxcala and its potential use in risk stratification. Results and discussion: Our findings highlight the existence of a distinct profile of ProB-ALL in children older than 10 years, which is associated with a six-fold increase in the risk of developing measurable residual disease (MRD). Along with the absence of CD34+ seminal cells for normal hematopoiesis, this ProB-ALL subtype exhibited several characteristics related to poor prognosis, including the high expression level of myeloid lineage markers such as MPO and CD33, as well as upregulation of CD19, CD34, CD24, CD20 and nuTdT. In contrast, it showed a trend towards decreased expression of CD9, CD81, CD123, CD13, CD15 and CD21. Of note, the mesenchymal stromal cell compartment constituting their leukemic niche in the bone marrow, displayed characteristics of potential suppressive microenvironment, such as the expression of Gal9 and IDO1, and the absence of the chemokine CXCL11. Accordingly, adaptive immunity components were poorly represented. Taken together, our results suggest, for the first time, that a biologically distinct subtype of ProB-ALL emerges in vulnerable adolescents, with a high risk of developing MRD. Rigorous research on potential enhancing factors, environmental or lifestyle, is crucial for its detection and prevention. The use of the reported profile for early risk stratification is suggested.

12.
Front Public Health ; 10: 1010256, 2022.
Article in English | MEDLINE | ID: mdl-36176536

ABSTRACT

Mexico, one of the countries severely affected by COVID-19, accumulated more than 5. 1 all-cause excess deaths/1,000 inhabitants and 2.5 COVID-19 confirmed deaths/1,000 inhabitants, in 2 years. In this scenario of high SARS-CoV-2 circulation, we analyzed the effectiveness of the country's vaccination strategy that used 7 different vaccines from around the world, and focused on vaccinating the oldest population first. We analyzed the national dataset published by Mexican health authorities, as a retrospective cohort, separating cases, hospitalizations, deaths and excess deaths by wave and age group. We explored if the vaccination strategy was effective to limit severe COVID-19 during the active outbreaks caused by Delta and Omicron variants. Vaccination of the eldest third of the population reduced COVID-19 hospitalizations, deaths and excess deaths by 46-55% in the third wave driven by Delta SARS-CoV-2. These adverse outcomes dropped 74-85% by the fourth wave driven by Omicron, when all adults had access to vaccines. Vaccine access for the pregnant resulted in 85-90% decrease in COVID-19 fatalities in pregnant individuals and 80% decrease in infants 0 years old by the Omicron wave. In contrast, in the rest of the pediatric population that did not access vaccination before the period analyzed, COVID-19 hospitalizations increased >40% during the Delta and Omicron waves. Our analysis suggests that the vaccination strategy in Mexico has been successful to limit population mortality and decrease severe COVID-19, but children in Mexico still need access to SARS-CoV-2 vaccines to limit severe COVID-19, in particular those 1-4 years old.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Mexico/epidemiology , Retrospective Studies , Vaccination
13.
J Leukoc Biol ; 112(1): 31-45, 2022 07.
Article in English | MEDLINE | ID: mdl-35674096

ABSTRACT

Leukemogenesis is proposed to result from the continuous interplay between inducive bone marrow (BM) microenvironments and malignant precursor cells. Recent findings point toward an abnormal production of proinflammatory mediators within the BM from acute lymphoblastic leukemia (ALL) patients, although the mechanism underlying this phenomenon is uncertain. Here, we have identified 3 miRNAs, miR-146a-5p, miR-181b-5p, and miR-199b-3p, as potential candidates for TLR8 ligation, which are overexpressed in ALL and show agonist functional binding. When purified from ALL exosomes, they demonstrated their capacity of inducing cytokine production by both, hematopoietic and stromal BM cells. Of note, the exposure of BM cells from ALL patients to the proinflammatory milieu resulting from these miRNAs agonist activity revealed the proliferation of normal progenitors, while poor effects were recorded in the leukemic counterpart. The unconventional roles of the tumor-secreted miRNAs as TLR8 agonist ligands may provide a novel mechanism contributing a tumor-microenvironment feedback loop by switching on proinflammatory pathways that further activate normal hematopoietic precursors and support ALL progression. Secreted B-ALL TLR8-agonist miRNAs are involved in the promotion of proinflammatory microenvironments that target normal hematopoietic cells. B-lineage ALL cells secrete exosomes containing miRNAs endowed with the ability of functionally binding TLR8 in hematopoietic and BM mesenchymal stromal cells. Upon TLR8 signaling, the activation of the NF-kB pathway induces secretion of proinflammatory cytokines that, in turn, promotes cell proliferation in early hematopoietic cell populations, driving a tumor-microenvironment-hematopoietic activation feedback loop that may reduce the normal hematopoietic stem and progenitor cell compartment and facilitate cancer progression.


Subject(s)
MicroRNAs , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Bone Marrow/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Toll-Like Receptor 8/metabolism , Tumor Microenvironment
14.
Cytokine ; 153: 155868, 2022 05.
Article in English | MEDLINE | ID: mdl-35358903

ABSTRACT

The COVID-19 disease has forced us to consider the physiologic role of obesity and metabolically healthy and unhealthy status in response to SARS-CoV-2 infection. Hematological, coagulation, biochemical, and immunoinflammatory changes have been informed with a disparity in morbidity and mortality. Therefore, we aimed to investigate the influence of metabolic health on clinical features in a cross-sectional study in Mexican subjects with and without SARS-CoV-2 infection in non-severe stages after a rigorous classification of obese and non-obese subjects who were metabolically healthy and unhealthy. Four groups were formed: 1) metabolically healthy with normal BMI (MHN); 2) metabolically unhealthy with normal BMI (MUN); 3) metabolically healthy obese (MHO); 4) metabolically unhealthy obese (MUO). Serum proinflammatory (TNF-α, MCP-1, IL-1ß, and IL-6) and anti-inflammatory (TGF-ß, IL-1Ra, IL-4, and IL-10) cytokines, hematological parameters, coagulation, and acute phase components were evaluated. Our results showed that MHO people live with inflammaging. Meanwhile, MUN and MUO subjects develop metaflammation. Both inflammaging and metaflammation cause imperceptible modifications on hematological parameters, mainly in leukocyte populations and platelets, as well as acute phase and coagulation components. The statistical analysis revealed that many clinical features are dependent on metabolic health. In conclusion, MHO subjects seem to be transitioning from metabolically healthy to unhealthy, which is accelerated in acute processes, such as SARS-CoV-2 infection. Meanwhile, metabolically unhealthy subjects independently of BMI have a deteriorating immunometabolic status associated with a hyperinflammatory state leading to multi-organ dysfunction, treatment complications, and severe COVID-19 disease.


Subject(s)
COVID-19 , Metabolic Syndrome , Body Mass Index , Cross-Sectional Studies , Humans , Obesity/metabolism , Risk Factors , SARS-CoV-2
15.
Cells ; 10(11)2021 10 23.
Article in English | MEDLINE | ID: mdl-34831080

ABSTRACT

BACKGROUND: In vitro methods for hematopoietic differentiation of human pluripotent stem cells (hPSC) are a matter of priority for the in-depth research into the mechanisms of early embryogenesis. So-far, published results regarding the generation of hematopoietic cells come from studies using either 2D or 3D culture formats, hence, it is difficult to discern their particular contribution to the development of the concept of a unique in vitro model in close resemblance to in vivo hematopoiesis. AIM OF THE STUDY: To assess using the same culture conditions and the same time course, the potential of each of these two formats to support differentiation of human pluripotent stem cells to primitive hematopoiesis without exogenous activation of Wnt signaling. METHODS: We used in parallel 2D and 3D formats, the same culture environment and assay methods (flow cytometry, IF, qPCR) to investigate stages of commitment and specification of mesodermal, and hemogenic endothelial cells to CD34 hematopoietic cells and evaluated their clonogenic capacity in a CFU system. RESULTS: We show an adequate formation of mesoderm, an efficient commitment to hemogenic endothelium, a higher number of CD34 hematopoietic cells, and colony-forming capacity potential only in the 3D format-supported differentiation. CONCLUSIONS: This study shows that the 3D but not the 2D format ensures the induction and realization by endogenous mechanisms of human pluripotent stem cells' intrinsic differentiation program to primitive hematopoietic cells. We propose that the 3D format provides an adequate level of upregulation of the endogenous Wnt/ß-catenin signaling.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Hematopoietic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Cell Line , Cell Lineage , Humans , Wnt Signaling Pathway
16.
Front Immunol ; 12: 746492, 2021.
Article in English | MEDLINE | ID: mdl-34737747

ABSTRACT

B-cell acute lymphoblastic leukemia (B-ALL) results from the expansion of malignant lymphoid precursors within the bone marrow (BM), where hematopoietic niches and microenvironmental signals provide leukemia-initiating cells (LICs) the conditions to survive, proliferate, initiate disease, and relapse. Normal and malignant lymphopoiesis are highly dependent on the BM microenvironment, particularly on CXCL12-abundant Reticular (CAR) cells, which provide a niche for maintenance of primitive cells. During B-ALL, leukemic cells hijack BM niches, creating a proinflammatory milieu incompetent to support normal hematopoiesis but favoring leukemic proliferation. Although the lack of a phenotypic stem cell hierarchy is apparent in B-ALL, LICs are a rare and quiescent population potentially responsible for chemoresistance and relapse. Here, we developed novel patient-derived leukemia spheroids (PDLS), an ex vivo avatar model, from mesenchymal stromal cells (MSCs) and primary B-ALL cells, to mimic specialized niche structures and cell-to-cell intercommunication promoting normal and malignant hematopoiesis in pediatric B-ALL. 3D MSC spheroids can recapitulate CAR niche-like hypoxic structures that produce high levels of CXCL10 and CXCL11. We found that PDLS were preferentially enriched with leukemia cells displaying functional properties of LICs, such as quiescence, low reactive oxygen species, drug resistance, high engraftment in immunodeficient mice, and long-term leukemogenesis. Moreover, the combination of PDLS and patient-derived xenografts confirmed a microenvironment-driven hierarchy in their leukemic potential. Importantly, transcriptional profiles of MSC derived from primary patient samples revealed two unique signatures (1), a CXCL12low inflammatory and leukemia expansion (ILE)-like niche, that likely supports leukemic burden, and (2) a CXCL11hi immune-suppressive and leukemia-initiating cell (SLIC)-like niche, where LICs are likely sustained. Interestingly, the CXCL11+ hypoxic zones were recapitulated within the PDLS that are capable of supporting LIC functions. Taken together, we have implemented a novel PDLS system that enriches and supports leukemia cells with stem cell features driven by CXCL11+ MSCs within hypoxic microenvironments capable of recapitulating key features, such as tumor reemergence after exposure to chemotherapy and tumor initiation. This system represents a unique opportunity for designing ex vivo personalized avatars for B-ALL patients to evaluate their own LIC pathobiology and drug sensitivity in the context of the tumor microenvironment.


Subject(s)
Neoplastic Stem Cells/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Spheroids, Cellular , Stem Cell Niche , Tumor Cells, Cultured , Animals , Bone Marrow/pathology , Female , Heterografts , Humans , Mesenchymal Stem Cells/pathology , Mice , Tumor Microenvironment
17.
Stem Cell Res Ther ; 12(1): 498, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34503571

ABSTRACT

Cross talk between cancer cells and the immune system is determinant for cancer progression. Emerging evidence demonstrates that GC characteristics such as metastasis, treatment resistance, and disease recurrence are associated with a tumor subpopulation called gastric cancer stem cells (GCSCs). However, the specific interaction between GCSCs and the immune microenvironment is still under investigation. Although immune evasion has been well described for cancer stem cells (CSCs), recent studies show that GCSCs can also regulate the immune system and even benefit from it. This review will provide an overview of bidirectional interactions between CSCs and immune cells in GC, compiling relevant data about how CSCs can induce leukocyte reprogramming, resulting in pro-tumoral immune cells that orchestrate promotion of metastasis, chemoresistance, tumorigenicity, and even increase in number of cancer cells with stem properties. Some immune cells studied are tumor-associated macrophages (TAMs), neutrophils, Th17 and T regulatory (Treg) cells, mesenchymal stem cells (MSCs), and cancer-associated fibroblasts (CAFs), as well as the signaling pathways involved in these pro-tumoral activities. Conversely, although there are cytotoxic leukocytes that can potentially eliminate GCSCs, we describe mechanisms for immune evasion in GCSCs and their clinical implications. Furthermore, we describe current available immunotherapy targeting GCSC-related markers as possible treatment for GC, discussing how the CSC-modified immune microenvironment can mitigate or inactivate these immunotherapies, limiting their effectiveness. Finally, we summarize key concepts and relevant evidence to understand the cross talk between GCSCs and the immune microenvironment as an important process for effective design of therapies against GCSCs that improve the outcome of patients with GC.


Subject(s)
Antineoplastic Agents , Stomach Neoplasms , Antineoplastic Agents/pharmacology , Humans , Immunotherapy , Neoplastic Stem Cells , Signal Transduction , Stomach Neoplasms/therapy , Tumor Microenvironment
18.
Front Immunol ; 12: 642842, 2021.
Article in English | MEDLINE | ID: mdl-34177892

ABSTRACT

The balance between pro- and anti-inflammatory immune system responses is crucial to face and counteract complex diseases such as cancer. Macrophages are an essential population that contributes to this balance in collusion with the local tumor microenvironment. Cancer cells evade the attack of macrophages by liberating cytokines and enhancing the transition to the M2 phenotype with pro-tumoral functions. Despite this pernicious effect on immune systems, the M1 phenotype still exists in the environment and can eliminate tumor cells by liberating cytokines that recruit and activate the cytotoxic actions of TH1 effector cells. Here, we used a Boolean modeling approach to understand how the tumor microenvironment shapes macrophage behavior to enhance pro-tumoral functions. Our network reconstruction integrates experimental data and public information that let us study the polarization from monocytes to M1, M2a, M2b, M2c, and M2d subphenotypes. To analyze the dynamics of our model, we modeled macrophage polarization in different conditions and perturbations. Notably, our study identified new hybrid cell populations, undescribed before. Based on the in vivo macrophage behavior, we explained the hybrid macrophages' role in the tumor microenvironment. The in silico model allowed us to postulate transcriptional factors that maintain the balance between macrophages with anti- and pro-tumoral functions. In our pursuit to maintain the balance of macrophage phenotypes to eliminate malignant tumor cells, we emulated a theoretical genetically modified macrophage by modifying the activation of NFκB and a loss of function in HIF1-α and discussed their phenotype implications. Overall, our theoretical approach is as a guide to design new experiments for unraveling the principles of the dual host-protective or -harmful antagonistic roles of transitional macrophages in tumor immunoediting and cancer cell fate decisions.


Subject(s)
Macrophages/physiology , Neoplasms/immunology , Transcription, Genetic , Tumor Microenvironment , Cell Polarity , Gene Regulatory Networks , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Models, Theoretical , NF-kappa B/physiology
19.
Bol Med Hosp Infant Mex ; 78(3): 159-170, 2021.
Article in English | MEDLINE | ID: mdl-34167145

ABSTRACT

Acute leukemia is the leading cause of death in children worldwide, particularly in developing countries where the growing number of cases with unfavorable prognosis and high risk of early relapse have positioned pediatric cancer as a priority. The late and imprecise diagnosis, malnutrition and unfavorable environmental conditions, and toxicity-associated therapy are some of the factors that compromise the success of the treatment and affect survival rates in vulnerable regions. An early and exhaustive classification of malignant neoplasms at the clinical debut and the proper follow-up of treatment's response constitute one of the most powerful prognostic factors. Remarkably, the ultrasensitive detection of residual and relapse clones that determine the minimal/measurable residual disease (MRD) has been a milestone in the comprehensive management of hematologic malignancies that favorably improve the complete remission cases. In this review, we discuss the scientific and technological advances applied to laboratory diagnosis in MRD determination: from the multiparametric immunophenotyping to next-generation sequencing and cytomics. As a result of multidisciplinary research in the main concentration oncology centers and laboratories, residual leukemia detection strategies that combine molecular analysis and cellular markers are recommended as the most valuable tools, making them the paradigm for stratification campaigns in vulnerable regions.


La leucemia aguda es la principal causa de muerte por enfermedad en la población infantil mundial, en particular en los países con economías en desarrollo, donde el creciente número de casos con pronóstico desfavorable y riesgo de recaídas tempranas ha posicionado a esta enfermedad como una prioridad de salud. El diagnóstico tardío y de baja precisión, la ausencia de condiciones favorables de alimentación y entorno ambiental, así como la toxicidad asociada a la terapia, son algunos de los factores que condicionan el éxito del tratamiento y afectan las tasas de supervivencia en las regiones más vulnerables. La clasificación temprana y exhaustiva del tumor maligno en la presentación clínica y durante el seguimiento de respuesta al tratamiento es uno de los más poderosos factores pronósticos. En especial, la detección ultrasensible de clonas residuales y reemergentes que determinan la enfermedad residual mínima medible ha sido un hito en el manejo integral de las neoplasias hematológicas y ha impactado favorablemente en las cifras de remisión completa. En esta revisión se comentan los avances científicos y tecnológicos aplicados al diagnóstico de laboratorio y a la determinación de la enfermedad residual mínima: desde la inmunofenotipificación multiparamétrica hasta la secuenciación y la citómica de última generación. Como resultado de las investigaciones multidisciplinarias en los principales centros oncológicos de concentración y los laboratorios de clase mundial, las estrategias de detección de la leucemia residual que combinan análisis moleculares y marcadores celulares han sido recomendadas como las de mayor utilidad, por lo que son el paradigma para las campañas de estratificación en las regiones vulnerables.


Subject(s)
Leukemia, Myeloid, Acute , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Immunophenotyping , Neoplasm, Residual , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Prognosis
20.
Bol. méd. Hosp. Infant. Méx ; 78(3): 159-170, May.-Jun. 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1285480

ABSTRACT

Abstract Acute leukemia is the leading cause of death in children worldwide, particularly in developing countries where the growing number of cases with unfavorable prognosis and high risk of early relapse have positioned pediatric cancer as a priority. The late and imprecise diagnosis, malnutrition and unfavorable environmental conditions, and toxicity-associated therapy are some of the factors that compromise the success of the treatment and affect survival rates in vulnerable regions. An early and exhaustive classification of malignant neoplasms at the clinical debut and the proper follow-up of treatment’s response constitute one of the most powerful prognostic factors. Remarkably, the ultrasensitive detection of residual and relapse clones that determine the minimal/measurable residual disease (MRD) has been a milestone in the comprehensive management of hematologic malignancies that favorably improve the complete remission cases. In this review, we discuss the scientific and technological advances applied to laboratory diagnosis in MRD determination: from the multiparametric immunophenotyping to next-generation sequencing and cytomics. As a result of multidisciplinary research in the main concentration oncology centers and laboratories, residual leukemia detection strategies that combine molecular analysis and cellular markers are recommended as the most valuable tools, making them the paradigm for stratification campaigns in vulnerable regions.


Resumen La leucemia aguda es la principal causa de muerte por enfermedad en la población infantil mundial, en particular en los países con economías en desarrollo, donde el creciente número de casos con pronóstico desfavorable y riesgo de recaídas tempranas ha posicionado a esta enfermedad como una prioridad de salud. El diagnóstico tardío y de baja precisión, la ausencia de condiciones favorables de alimentación y entorno ambiental, así como la toxicidad asociada a la terapia, son algunos de los factores que condicionan el éxito del tratamiento y afectan las tasas de supervivencia en las regiones más vulnerables. La clasificación temprana y exhaustiva del tumor maligno en la presentación clínica y durante el seguimiento de respuesta al tratamiento es uno de los más poderosos factores pronósticos. En especial, la detección ultrasensible de clonas residuales y reemergentes que determinan la enfermedad residual mínima medible ha sido un hito en el manejo integral de las neoplasias hematológicas y ha impactado favorablemente en las cifras de remisión completa. En esta revisión se comentan los avances científicos y tecnológicos aplicados al diagnóstico de laboratorio y a la determinación de la enfermedad residual mínima: desde la inmunofenotipificación multiparamétrica hasta la secuenciación y la citómica de última generación. Como resultado de las investigaciones multidisciplinarias en los principales centros oncológicos de concentración y los laboratorios de clase mundial, las estrategias de detección de la leucemia residual que combinan análisis moleculares y marcadores celulares han sido recomendadas como las de mayor utilidad, por lo que son el paradigma para las campañas de estratificación en las regiones vulnerables.

SELECTION OF CITATIONS
SEARCH DETAIL