Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Science ; 384(6696): eadk4858, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38723085

ABSTRACT

To fully understand how the human brain works, knowledge of its structure at high resolution is needed. Presented here is a computationally intensive reconstruction of the ultrastructure of a cubic millimeter of human temporal cortex that was surgically removed to gain access to an underlying epileptic focus. It contains about 57,000 cells, about 230 millimeters of blood vessels, and about 150 million synapses and comprises 1.4 petabytes. Our analysis showed that glia outnumber neurons 2:1, oligodendrocytes were the most common cell, deep layer excitatory neurons could be classified on the basis of dendritic orientation, and among thousands of weak connections to each neuron, there exist rare powerful axonal inputs of up to 50 synapses. Further studies using this resource may bring valuable insights into the mysteries of the human brain.


Subject(s)
Neurons , Synapses , Temporal Lobe , Humans , Neurons/ultrastructure , Synapses/physiology , Synapses/ultrastructure , Oligodendroglia/cytology , Neuroglia , Cerebral Cortex/blood supply , Cerebral Cortex/cytology , Cerebral Cortex/ultrastructure , Dendrites/physiology , Axons/physiology , Axons/ultrastructure
2.
Elife ; 122023 Jul 06.
Article in English | MEDLINE | ID: mdl-37410519

ABSTRACT

Here, we present the first analysis of the connectome of a small volume of the Octopus vulgaris vertical lobe (VL), a brain structure mediating the acquisition of long-term memory in this behaviorally advanced mollusk. Serial section electron microscopy revealed new types of interneurons, cellular components of extensive modulatory systems, and multiple synaptic motifs. The sensory input to the VL is conveyed via~1.8 × 106 axons that sparsely innervate two parallel and interconnected feedforward networks formed by the two types of amacrine interneurons (AM), simple AMs (SAMs) and complex AMs (CAMs). SAMs make up 89.3% of the~25 × 106VL cells, each receiving a synaptic input from only a single input neuron on its non-bifurcating primary neurite, suggesting that each input neuron is represented in only~12 ± 3.4SAMs. This synaptic site is likely a 'memory site' as it is endowed with LTP. The CAMs, a newly described AM type, comprise 1.6% of the VL cells. Their bifurcating neurites integrate multiple inputs from the input axons and SAMs. While the SAM network appears to feedforward sparse 'memorizable' sensory representations to the VL output layer, the CAMs appear to monitor global activity and feedforward a balancing inhibition for 'sharpening' the stimulus-specific VL output. While sharing morphological and wiring features with circuits supporting associative learning in other animals, the VL has evolved a unique circuit that enables associative learning based on feedforward information flow.


Subject(s)
Connectome , Octopodiformes , Animals , Octopodiformes/physiology , Memory/physiology , Neurons/physiology , Brain/physiology
3.
Curr Biol ; 32(1): 176-189.e5, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34822765

ABSTRACT

All animals need to differentiate between exafferent stimuli, which are caused by the environment, and reafferent stimuli, which are caused by their own movement. In the case of mechanosensation in aquatic animals, the exafferent inputs are water vibrations in the animal's proximity, which need to be distinguishable from the reafferent inputs arising from fluid drag due to locomotion. Both of these inputs are detected by the lateral line, a collection of mechanosensory organs distributed along the surface of the body. In this study, we characterize in detail how hair cells-the receptor cells of the lateral line-in zebrafish larvae discriminate between such reafferent and exafferent signals. Using dye labeling of the lateral line nerve, we visualize two parallel descending inputs that can influence lateral line sensitivity. We combine functional imaging with ultra-structural EM circuit reconstruction to show that cholinergic signals originating from the hindbrain transmit efference copies (copies of the motor command that cancel out self-generated reafferent stimulation during locomotion) and that dopaminergic signals from the hypothalamus may have a role in threshold modulation, both in response to locomotion and salient stimuli. We further gain direct mechanistic insight into the core components of this circuit by loss-of-function perturbations using targeted ablations and gene knockouts. We propose that this simple circuit is the core implementation of mechanosensory reafferent suppression in these young animals and that it might form the first instantiation of state-dependent modulation found at later stages in development.


Subject(s)
Lateral Line System , Zebrafish , Animals , Larva , Lateral Line System/physiology , Locomotion/physiology , Rhombencephalon , Zebrafish/physiology
4.
Comput Vis ECCV ; 12363: 103-120, 2020 Aug.
Article in English | MEDLINE | ID: mdl-33345257

ABSTRACT

For large-scale vision tasks in biomedical images, the labeled data is often limited to train effective deep models. Active learning is a common solution, where a query suggestion method selects representative unlabeled samples for annotation, and the new labels are used to improve the base model. However, most query suggestion models optimize their learnable parameters only on the limited labeled data and consequently become less effective for the more challenging unlabeled data. To tackle this, we propose a two-stream active query suggestion approach. In addition to the supervised feature extractor, we introduce an unsupervised one optimized on all raw images to capture diverse image features, which can later be improved by fine-tuning on new labels. As a use case, we build an end-to-end active learning framework with our query suggestion method for 3D synapse detection and mitochondria segmentation in connectomics. With the framework, we curate, to our best knowledge, the largest connectomics dataset with dense synapses and mitochondria annotation. On this new dataset, our method outperforms previous state-of-the-art methods by 3.1% for synapse and 3.8% for mitochondria in terms of region-of-interest proposal accuracy. We also apply our method to image classification, where it outperforms previous approaches on CIFAR-10 under the same limited annotation budget. The project page is https://zudi-lin.github.io/projects/#two_stream_active.

5.
Cell Rep ; 29(9): 2849-2861.e6, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31775050

ABSTRACT

During postnatal development, cerebellar climbing fibers alter their innervation strengths onto supernumerary Purkinje cell targets, generating a one-to-few connectivity pattern in adulthood. To get insight about the processes responsible for this remapping, we reconstructed serial electron microscopy datasets from mice during the first postnatal week. Between days 3 and 7, individual climbing fibers selectively add many synapses onto a subset of Purkinje targets in a positive-feedback manner, without pruning synapses from other targets. Active zone sizes of synapses associated with powerful versus weak inputs are indistinguishable. Changes in synapse number are thus the predominant form of early developmental plasticity. Finally, the numbers of climbing fibers and Purkinje cells in a local region nearly match. Initial over-innervation of Purkinje cells by climbing fibers is therefore economical: the number of axons entering a region is enough to assure that each ultimately retains a postsynaptic target and that none branched there in vain.


Subject(s)
Cerebellum/physiopathology , Nerve Fibers/metabolism , Synapses/metabolism , Animals , Humans , Mice
6.
Biochemistry ; 55(39): 5520-5530, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27575020

ABSTRACT

The ErbB family of tyrosine kinase receptors is a key element in preserving cell growth homeostasis. This family is comprised of four single-transmembrane domain proteins designated ErbB-1-4. Ligand binding initiates dimerization followed by tyrosine phosphorylation and signaling, which when uncontrolled lead to cancer. Accordingly, extensive research has been devoted to finding ErbB-intercepting agents, directed against ErbB-1 and ErbB-2, but so far, no inhibitor has targeted the transmembrane domain (TMD), which is instrumental for receptor dimerization and activation. Moreover, no antitumor agents targeted ErbB-3, which although it cannot generate signals in isolation, its heterodimerization with ErbB-2 leads to the most powerful and oncogenic signaling unit in the ErbB family. Here, to further elucidate the role of the interactions between the TMDs of the ErbB family in cancer, we investigated peptides derived from the TMDs of ErbB-1 and ErbB-2. We then focused on the C-terminal domains (B2C) and their analogue, named B2C-D, that contains both d- and l-amino acids. Both peptides incorporated the distal GXXXG dimerization motif to target the TMD of ErbB-3. Our results revealed that B2C-D is highly active both in vitro and in vivo. It significantly inhibits neuregulin- and EGF-induced ErbB activation, impedes the proliferation of a battery of human cancer cell lines, and retards tumor growth in vivo. Notably, combining low concentrations of B2C-D and gemcitabine chemotherapy completely arrested proliferation of pancreatic cancer cells. Biochemical and in vitro interaction studies suggest direct interference with the assembly of the wild-type ErbB-2-ErbB-3 heterodimer as the underlying mode of action. To the best of our knowledge, this is the first agent to target the TMDs of ErbB to delay tumor growth and signaling.


Subject(s)
ErbB Receptors/metabolism , Membrane Proteins/metabolism , Neoplasms/pathology , Peptides/metabolism , Amino Acid Sequence , Cell Line, Tumor , Dimerization , Humans , In Vitro Techniques , Membrane Proteins/chemistry , Neoplasms/metabolism , Peptides/chemistry , Phosphorylation , Sequence Homology, Amino Acid
7.
Elife ; 52016 07 07.
Article in English | MEDLINE | ID: mdl-27383271

ABSTRACT

Resolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types. We used viral vectors to deliver peroxidase derivatives, which catalyze production of an electron-dense tracer, to genetically identify neurons, and developed a protocol that enhances the electron-density of the labeled cells while retaining the quality of the ultrastructure. The high contrast of the marked neurons enabled two innovations that speed data acquisition: targeted high-resolution reimaging of regions selected from rapidly-acquired lower resolution reconstruction, and an unsupervised segmentation algorithm. This pipeline reduces imaging and reconstruction times by two orders of magnitude, facilitating directed inquiry of circuit motifs.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Electron/methods , Microtomy/methods , Nerve Net/anatomy & histology , Neural Pathways/anatomy & histology , Retina/cytology , Staining and Labeling/methods , Animals , Female , Male , Mice, Inbred C57BL
8.
PLoS One ; 7(6): e37984, 2012.
Article in English | MEDLINE | ID: mdl-22675501

ABSTRACT

Capsules frequently play a key role in bacterial interactions with their environment. Escherichia coli capsules were categorized as groups 1 through 4, each produced by a distinct mechanism. Etk and Etp are members of protein families required for the production of group 1 and group 4 capsules. These members function as a protein tyrosine kinase and protein tyrosine phosphatase, respectively. We show that Etp dephosphorylates Etk in vivo, and mutations rendering Etk or Etp catalytically inactive result in loss of group 4 capsule production, supporting the notion that cyclic phosphorylation and dephosphorylation of Etk is required for capsule formation. Notably, Etp also becomes tyrosine phosphorylated in vivo and catalyzes rapid auto-dephosphorylation. Further analysis identified Tyr121 as the phosphorylated residue of Etp. Etp containing Phe, Glu or Ala in place of Tyr121 retained phosphatase activity and catalyzed dephosphorylation of Etp and Etk. Although EtpY121E and EtpY121A still supported capsule formation, EtpY121F failed to do so. These results suggest that cycles of phosphorylation and dephosphorylation of Etp, as well as Etk, are involved in the formation of group 4 capsule, providing an additional regulatory layer to the complex control of capsule production.


Subject(s)
Bacterial Capsules/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Membrane Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Kinetics , Models, Biological , Molecular Sequence Data , Mutation/genetics , Phosphorylation , Phosphotyrosine/metabolism , Spectrometry, Mass, Electrospray Ionization
9.
J Biol Chem ; 287(7): 4544-51, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22158870

ABSTRACT

Pathogenic bacteria can resist their microenvironment by changing the expression of virulence genes. In Salmonella typhimurium, some of these genes are controlled by the two-component system PhoP-PhoQ. Studies have shown that activation of the system by cationic antimicrobial peptides (AMPs) results, among other changes, in outer membrane remodeling. However, it is not fully clear what characteristics of AMPs are required to activate the PhoP-PhoQ system and whether activation can induce resistance to the various AMPs. For that purpose, we investigated the ability of a broad repertoire of AMPs to traverse the inner membrane, to activate the PhoP-PhoQ system, and to induce bacterial resistance. The AMPs differ in length, composition, and net positive charge, and the tested bacteria include two wild-type (WT) Salmonella strains and their corresponding PhoP-PhoQ knock-out mutants. A lacZ-reporting system was adapted to follow PhoP-PhoQ activation. The data revealed that: (i) a good correlation exists among the extent of the positive charge, hydrophobicity, and amphipathicity of an AMP and its potency to activate PhoP-PhoQ; (ii) a +1 charged peptide containing histidines was highly potent, suggesting the existence of an additional mechanism independent of the peptide charge; (iii) the WT bacteria are more resistant to AMPs that are potent activators of PhoP-PhoQ; (iv) only a subset of AMPs, independent of their potency to activate the system, is more toxic to the mutated bacteria compared with the WT strains; and (v) short term exposure of WT bacteria to these AMPs does not enhance resistance. Overall, this study advances our understanding of the molecular mechanism by which AMPs activate PhoP-PhoQ and induce bacterial resistance. It also reveals that some AMPs can overcome such a resistance mechanism.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/physiology , Salmonella typhimurium/metabolism , Bacterial Proteins/genetics , Drug Resistance, Bacterial/drug effects , Gene Knockdown Techniques , Salmonella typhimurium/genetics
10.
J Biol Chem ; 283(34): 22907-17, 2008 Aug 22.
Article in English | MEDLINE | ID: mdl-18550541

ABSTRACT

Lipopolysaccharide (LPS) is the major structural component of the outer membrane of Gram-negative bacteria and shields them from a variety of host defense factors, including antimicrobial peptides (AMPs). LPS is also recognized by immune cells as a pathogen-associated molecular pattern and stimulates them to secrete pro-inflammatory cytokines that, in extreme cases, lead to a harmful host response known as septic shock. Previous studies have revealed that a few isoforms of the AMP temporin, produced within the same frog specimen, can synergize to overcome bacterial resistance imposed by the physical barrier of LPS. Here we found that temporins can synergize in neutralizing the LPS-induced macrophage activation. Furthermore, the synergism between temporins, to overcome the protective function of LPS as well as its endotoxic effect, depends on the length of the polysaccharide chain of LPS. Importantly, mode of action studies, using spectroscopic and thermodynamic methods, have pointed out different mechanisms underlying the synergism of temporins in antimicrobial and anti-endotoxin activities. To the best of our knowledge, such a dual synergism between isoforms of AMPs from the same species has not been observed before, and it might explain the ability of such amphibians to resist a large repertoire of microorganisms.


Subject(s)
Lipopolysaccharides/chemistry , Proteins/chemistry , Animals , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides , Bacterial Physiological Phenomena , Cytokines/metabolism , Endotoxins , Escherichia coli/metabolism , Macrophages/microbiology , Mice , Models, Statistical , Peptides/chemistry , Protein Isoforms , Spectrophotometry , Thermodynamics
11.
J Bacteriol ; 190(14): 5063-74, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18502854

ABSTRACT

Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp, etk, and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk. Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.


Subject(s)
Adhesins, Bacterial/metabolism , Bacterial Capsules/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli O157/pathogenicity , Escherichia coli Proteins/metabolism , Membrane Transport Proteins/metabolism , Virulence Factors/metabolism , Animals , Bacterial Adhesion , Bacterial Capsules/ultrastructure , Cell Line , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/ultrastructure , Epithelial Cells/microbiology , Erythrocytes/microbiology , Escherichia coli Infections , Escherichia coli O157/metabolism , Escherichia coli O157/ultrastructure , Escherichia coli Proteins/genetics , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Humans , Intestine, Large/microbiology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microscopy, Electron, Transmission , Mutagenesis, Insertional , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Rabbits , Trans-Activators/metabolism
12.
J Bacteriol ; 187(15): 5259-66, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16030220

ABSTRACT

Escherichia coli produces polysaccharide capsules that, based on their mechanisms of synthesis and assembly, have been classified into four groups. The group 4 capsule (G4C) polysaccharide is frequently identical to that of the cognate lipopolysaccharide O side chain and has, therefore, also been termed the O-antigen capsule. The genes involved in the assembly of the group 1, 2, and 3 capsules have been described, but those required for G4C assembly remained obscure. We found that enteropathogenic E. coli (EPEC) produces G4C, and we identified an operon containing seven genes, ymcD, ymcC, ymcB, ymcA, yccZ, etp, and etk, which are required for formation of the capsule. The encoded proteins appear to constitute a polysaccharide secretion system. The G4C operon is absent from the genomes of enteroaggregative E. coli and uropathogenic E. coli. E. coli K-12 contains the G4C operon but does not express it, because of the presence of IS1 at its promoter region. In contrast, EPEC, enterohemorrhagic E. coli, and Shigella species possess an intact G4C operon.


Subject(s)
Bacterial Capsules/genetics , Bacterial Proteins/genetics , Escherichia coli/genetics , Genes, Bacterial , Operon , Bacterial Capsules/chemistry , Bacterial Capsules/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Membrane Proteins/genetics , Mutation , O Antigens/metabolism , Protein-Tyrosine Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...