Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Glob Chang Biol ; 30(6): e17351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837306

ABSTRACT

The Earth functions as an integrated system-its current habitability to complex life is an emergent property dependent on interactions among biological, chemical, and physical components. As global warming affects ecosystem structure and function, so too will the biosphere affect climate by altering atmospheric gas composition and planetary albedo. Constraining these ecosystem-climate feedbacks is essential to accurately predict future change and develop mitigation strategies; however, the interplay among ecosystem processes complicates the assessment of their impact. Here, we explore the state-of-knowledge on how ecological and biological processes (e.g., competition, trophic interactions, metabolism, and adaptation) affect the directionality and magnitude of feedbacks between ecosystems and climate, using illustrative examples from the aquatic sphere. We argue that, despite ample evidence for the likely significance of many, our present understanding of the combinatorial effects of ecosystem dynamics precludes the robust quantification of most ecologically driven climate feedbacks. Constraining these effects must be prioritized within the ecological sciences for only by studying the biosphere as both subject and arbiter of global climate can we develop a sufficiently holistic view of the Earth system to accurately predict Earth's future and unravel its past.


La Terre fonctionne comme un système intégré­son habitabilité pour une vie complexe est une propriété émergente qui dépend des interactions entre les composantes biologiques, chimiques et physiques. Le réchauffement climatique affecte la structure et la fonction des écosystèmes, et en retour, la biosphère affecte également le climat en modifiant la composition des gaz atmosphériques et l'albédo planétaire. Il est essentiel de quantifier ces rétroactions entre les écosystèmes et le climat afin de prédire avec précision les changements futurs et élaborer des stratégies d'atténuation; cependant, l'interaction entre les processus écologiques complique l'évaluation de leurs impacts. Dans cet article, nous examinons l'état des connaissances sur la façon dont les processus écologiques et biologiques (par exemple, la concurrence, les interactions trophiques, le métabolisme, l'adaptation) affectent la directionnalité et l'ampleur des rétroactions entre les écosystèmes et le climat à l'aide d'exemples issus du monde aquatique. Nous soutenons que, malgré les nombreuses preuves de l'importance de plusieurs de ces rétroactions, notre compréhension limitée des effets additifs des processus écosystémiques empêche de faire une quantification robuste de la plupart des rétroactions climatiques d'origine écologique. Circonscrire ces effets doit être une priorité pour les sciences aquatiques, car ce n'est qu'en étudiant la biosphère en tant que sujet et arbitre du climat planétaire que nous pourrons développer une vision suffisamment holistique du système terrestre pour prédire avec précision l'avenir de la Terre et élucider son passé.


Subject(s)
Climate Change , Ecosystem , Aquatic Organisms/physiology
2.
Ecol Appl ; 33(7): e2895, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37282356

ABSTRACT

Trophic downgrading destabilizes ecosystems and can drive large-scale shifts in ecosystem state. While restoring predatory interactions in marine reserves can reverse anthropogenic-driven shifts, empirical evidence of increased ecosystem stability and persistence in the presence of predators is scant. We compared temporal variation in rocky reef ecosystem state in New Zealand's oldest marine reserve to nearby fished reefs to examine whether protection of predators led to more persistent and stable reef ecosystem states in the marine reserve. Contrasting ecosystem states were found between reserve and fished sites, and this persisted over the 22-year study period. Fished sites were predominantly urchin barrens but occasionally fluctuated to short-lived turfs and mixed algal forests, while reserve sites displayed unidirectional successional trajectories toward stable kelp forests (Ecklonia radiata) taking up to three decades following protection. This provides empirical evidence that long-term protection of predators facilitates kelp forest recovery, resists shifts to denuded alternate states, and enhances kelp forest stability.


Subject(s)
Ecosystem , Kelp , Animals , Food Chain , Sea Urchins , Forests
3.
Mar Environ Res ; 186: 105895, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36796113

ABSTRACT

Tracking changes in ecosystem health is an important objective for environmental managers, but is often limited by an understanding of what constitutes a "healthy" system and how to aggregate a range of health indicators into a single meaningful metric. We used a multi-indicator 'state space' approach to quantify changes over 13 years in reef ecosystem health in an urban area that has undergone intense housing development. Based on nine health indicators (macroalgal canopy length and biomass, macroalgal canopy and habitat functional diversity, mobile and predatory invertebrate density and size, total species and non-indigenous species richness), we found that the overall health of the reef community declined at five of the ten study sites. This decline was associated with a large collapse in the gastropod community, a shortening of macroalgal canopies and an increase in the number of non-indigenous species. While the cause of this decline and mechanisms responsible are not fully understood, the decline correlated with an increase in sediment cover on the reefs and warming ocean temperatures over the monitoring period. The proposed approach provides an objective and multifaceted quantitative assessment of ecosystem health that can be easily interpreted and communicated. These methods could be adapted to other ecosystem types to inform management decisions regarding future monitoring, conservation and restoration priorities to achieve greater ecosystem health.


Subject(s)
Coral Reefs , Ecosystem , Animals , Fishes , Biomass , Invertebrates
4.
Mar Environ Res ; 160: 105045, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32827846

ABSTRACT

Mediterranean coastal ecosystems experience many local and global stressors and require long-term monitoring to detect and follow trends in community structure. Between 2009 and 2017, we seasonally and annually monitored the spatiotemporal community dynamics at 11 sites on the rocky shores of the southeastern Mediterranean, focusing on the understudied intertidal vermetid reef ecosystem. Marked seasonal trends were found in biodiversity, with the highest diversity in winter and spring. Canopy-forming brown algae, dominating the northwestern Mediterranean intertidal reefs, were generally scarce on the reef platform and almost only found in tidepools. Interannual shifts in community structure were driven mostly by sharp fluctuations in a few dominant native and alien species and the regional mass mortality of an Indo-Pacific mussel in summer 2016. Compared to an older macroalgae dataset, dating back to 1973-1995, we found that some warm-affinity (summer) taxa became more dominant and cold-affinity (winter) species less dominant, while one once conspicuous species, Halimeda tuna, completely disappeared. The observed community shifts are probably driven mostly by stressors related to climate change. We encourage forming a network of long-term, multi-site ecological monitoring programs in the Mediterranean to improve our understanding of ecosystem change and to enable making better predictions at the basin scale.


Subject(s)
Biodiversity , Ecosystem , Seaweed , Climate Change , Coral Reefs , Mediterranean Sea , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...