Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Sci ; 13: 22, 2013.
Article in English | MEDLINE | ID: mdl-23901823

ABSTRACT

The mosquito Aedes aegypti (L.) (Diptera: Culicidae) is the primary vector of dengue in the Americas. The use of chemical insecticides is recommended during outbreaks of dengue in order to reduce the number of adult mosquitoes; however, because Ae. aegypti is highly synanthropic, the use of insecticides in densely populated areas is a dangerous practice. Leptolegnia chapmanii Seymour (Straminipila: Peronosporomycetes) is an entomopathogenic microorganism that has demonstrated marked pathogenicity toward the larvae of a number of mosquito species, with little or no effect on non-target insects. Therefore, the purpose of this study was to determine the sublethal effects of L. chapmanii on fecundity, number of gonotrophic cycles, fertility, and relationship between wing length and fecundity in Ae. aegypti females. Ae. aegypti females that survived infection with L. chapmanii laid fewer eggs, had a smaller number of gonotrophic cycles, had shorter wings, and were less fertile than controls. This is the first study on the sublethal effects experienced by specimens of Ae. aegypti that survived infection with zoospores of L. chapmanii. Although field studies should be carried out, the results obtained in this study are encouraging because the high and rapid larval mortality caused by L. chapmanii coupled with the reduction of reproductive capacity in Ae. aegypti females seem to cause a significant reduction in the number of adults in the mid and long term, thereby reducing the health risks associated with Ae. aegypti.


Subject(s)
Aedes/microbiology , Host-Pathogen Interactions , Insect Vectors/microbiology , Oomycetes/physiology , Pest Control, Biological , Animals , Dengue/transmission , Female , Fertility , Male , Wings, Animal/growth & development
2.
World J Microbiol Biotechnol ; 28(4): 1359-66, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22805916

ABSTRACT

Tropidacris collaris (Orthoptera: Romaleidae) is a large and voracious grasshopper, which, in recent years, has become a recurrent pest in increasingly extensive areas of Argentina's northern provinces. In the present work chitinase activity was measured in 59 entomopathogenic fungal isolates native to Argentina, and the relationship between enzymatic activity and fungal virulence was assessed. Isolate LPSC 1067 caused the highest mortality on T. collaris nymphs (97.7 ± 1.22%). Nine isolates caused no mortality, while the remaining 49 caused mortalities ranging from 6.6 ± 0.3% (LPSC 770) to 91.06 ± 1.51% (LPSC 906). Several isolates revealed chitinolytic capabilities on test plates, although the activities differed with respect to the ratio of the chitin-decay-halo and fungal-colony diameters. A principal component analysis indicated that isolate LPSC 1067, obtained from a long-horned grasshopper (Orthoptera: Tettigoniidae), would be a potential candidate for T. collaris biocontrol because the strain exhibited the highest mortality, a shorter median lethal time, and a high enzymatic activity and growth rate.


Subject(s)
Chitinases/metabolism , Fungi/enzymology , Fungi/pathogenicity , Grasshoppers/microbiology , Mass Screening/methods , Pest Control, Biological/methods , Animals , Argentina , Fungi/isolation & purification , Grasshoppers/physiology , Survival Analysis , Virulence
3.
J Insect Sci ; 11: 70, 2011.
Article in English | MEDLINE | ID: mdl-21867437

ABSTRACT

Fusarium verticillioides (Saccardo) Nirenberg (Ascomycota: Hypocreales) is the most common fungus reported on infected corn kernels and vegetative tissues, but has not yet been documented as being entomopathogenic for grasshoppers. Grasshoppers and locusts represent a large group of insects that cause economic damage to forage and crops. Tropidacris collaris (Stoll) (Orthoptera: Acridoidea: Romaleidae) is a large and voracious grasshopper that in recent years has become an increasingly recurrent and widespread pest in progressively more greatly extended areas of some of in Argentina's northern provinces, with chemical insecticides being currently the only means of control. During February and March of 2008-09, nymphs and adults of T. collaris were collected with sweep nets in dense woodland vegetation at a site near Tres Estacas in western Chaco Province, Argentina, and kept in screened cages. F. verticillioides was isolated from insects that died within 10 days and was cultured in PGA medium. Pathogenicity tests were conducted and positive results recorded. Using traditional and molecular-biological methods, an isolate of F. verticillioides was obtained from T. collaris, and its pathogenecity in the laboratory was shown against another harmful grasshopper, Ronderosia bergi (Stål) (Acridoidea: Acrididae: Melanoplinae). The mortality caused by F. verticillioides on R. bergi reached 58 ± 6.53% by 10 days after inoculation. This is the first record of natural infection caused by F. verticillioides in grasshoppers.


Subject(s)
Fusarium/physiology , Grasshoppers/microbiology , Host-Pathogen Interactions , Animals , Fusarium/isolation & purification
4.
Mycopathologia ; 169(1): 71-4, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19603285

ABSTRACT

The aquatic oomycete fungus Leptolegnia chapmanii Seymour is pathogenic to mosquito larvae, but it has been little studied since it was first isolated. Although studies have been performed on different biological isolates of L. chapmanii around the world, they were made on zoospores and a very little or even nothing is known about the sexual stage (oogonia and oospores), which allows L. chapmanii to remain in the environment when conditions are not favorable. The main objective of this study was to determine the relationship between temperature and time of onset of L. chapmanii oogonia and oospores in Ae. aegypti larvae. Leptolegnia chapmanii-infected IV instar Ae. aegypti larvae were incubated at different temperatures between 5 and 45 degrees C and photoperiod-controlled for 90 days. The number of oogonia and oospores was examined daily for each tested temperature. As was expected, low temperatures extended the times of oogonia formation, as much as seven times. Likewise, temperatures significantly affect the number of oogonia produced.


Subject(s)
Aedes/microbiology , Oogonia/growth & development , Saprolegnia/physiology , Spores, Fungal/growth & development , Temperature , Animals , Ecosystem , Larva/microbiology , Mosquito Control , Time Factors
5.
J Invertebr Pathol ; 96(2): 133-7, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17521667

ABSTRACT

The effects of temperature, pH, and NaCl concentrations on the infectivity of zoospores of Leptolegnia chapmanii (Argentine isolate) were determined for Aedes aegypti and Culex pipiens under laboratory conditions. Zoospores of L. chapmanii were infectious at temperatures between 10 and 35 degrees C but not at 5 or 40 degrees C. At the permissive temperatures, mortality rates in young instars were much higher than in older instars and larvae of Ae. aegypti were more susceptible to L. chapmanii than larvae of Cx. pipiens. At 25 degrees C, Ae. aegypti larvae challenged with L. chapmanii zoospores resulted in 100% infection at pH levels ranging from 4 to 10. Larvae of Cx. pipiens exposed to similar pH and zoospore concentrations resulted in increasing mortality rates from 62% to 99% at pH 4 to 7, respectively, and then decreased to 71% at pH 10. Aedes aegypti larvae exposed to L. chapmanii zoospores in NaCl concentrations ranging from 0 to 7 parts per thousand (ppt) at 25 degrees C resulted in 100% mortality while mortality rates for Cx. pipiens decreases from 96% in distilled water to 31.5% in water with 6 ppt NaCl. Control Cx. pipiens larvae died when exposed at a NaCl concentration of 7 ppt. Vegetative growth of L. chapmanii was negatively affected by NaCl concentrations. These results have demonstrated that the Argentinean isolate of L. chapmanii tolerated a wide range of temperatures, pH, and salinity, suggesting that it has the potential to adapt to a wide variety of mosquito habitats.


Subject(s)
Culicidae/parasitology , Saprolegnia/pathogenicity , Sodium Chloride , Temperature , Animals , Argentina , Ecosystem , Hydrogen-Ion Concentration , Infections/physiopathology , Larva/parasitology , Saprolegnia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL