Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 10(7)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34359399

ABSTRACT

Aflatoxin food contamination represents a rising global issue that will continue to increase due to climate change. Aflatoxin M1 (AFM1) is of high concern for the whole dairy industry. In light of AFM1's harmful potential, a human health exposure assessment and risk characterization were performed for all age populations of central Italy with regard to milk and cheese consumption by means of the margin of exposure (MOE). In total, 16,934 cow and ewe's milk samples were collected from 2014 to 2020 and analyzed by an enzyme-linked immunosorbent assay (ELISA) screening method, confirmed by high-performance liquid chromatography with a fluorescence detector (HPLC-FLD). The average concentration of AFM1 in cow's milk ranged from 0.009 to 0.015 µg/kg, while in ewe's milk, the average concentration ranged from 0.009 to 0.013 µg/kg. The average amount of AFM1 exposure ranged from 0.00005 to 0.00195 g/kg bw/day, with the main contributor represented by drinking milk, followed by the consumption of soft cheeses. A high level of public health concern related to the youngest consumers has arisen from risk characterizations highlighting the need for constant monitoring of AFM1's occurrence in milk by inspection authorities, alongside regular updates with regard to exposure assessments.

2.
J Environ Sci Health B ; 51(3): 133-42, 2016.
Article in English | MEDLINE | ID: mdl-26671720

ABSTRACT

A simple and straightforward method for simultaneous determination of residues of 13 pesticides in honey samples (acrinathrin, bifenthrin, bromopropylate, cyhalothrin-lambda, cypermethrin, chlorfenvinphos, chlorpyrifos, coumaphos, deltamethrin, fluvalinate-tau, malathion, permethrin and tetradifon) from different pesticide classes has been developed and validated. The analytical method provides dissolution of honey in water and an extraction of pesticide residues by n-Hexane followed by clean-up on a Florisil SPE column. The extract was evaporated and taken up by a solution of an injection internal standard (I-IS), ethion, and finally analyzed by capillary gas chromatography with electron capture detection (GC-µECD). Identification for qualitative purpose was conducted by gas chromatography with triple quadrupole mass spectrometer (GC-MS/MS). A matrix-matched calibration curve was performed for quantitative purposes by plotting the area ratio (analyte/I-IS) against concentration using a GC-µECD instrument. According to document No. SANCO/12571/2013, the method was validated by testing the following parameters: linearity, matrix effect, specificity, precision, trueness (bias) and measurement uncertainty. The analytical process was validated analyzing blank honey samples spiked at levels equal to and greater than 0.010 mg/kg (limit of quantification). All parameters were satisfactorily compared with the values established by document No. SANCO/12571/2013. The analytical performance was verified by participating in eight multi-residue proficiency tests organized by BIPEA, obtaining satisfactory z-scores in all 70 determinations. Measurement uncertainty was estimated according to the top-down approaches described in Appendix C of the SANCO document using the within-laboratory reproducibility relative standard deviation combined with laboratory bias using the proficiency test data.


Subject(s)
Honey/analysis , Pesticides/analysis , Calibration , European Union , Food Analysis/methods , Food Analysis/standards , Food Analysis/statistics & numerical data , Food Contamination/analysis , Gas Chromatography-Mass Spectrometry/methods , Hexanes/chemistry , Limit of Detection , Pesticide Residues/analysis , Pesticides/chemistry , Tandem Mass Spectrometry , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...