Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38691660

ABSTRACT

SNPs in the FAM13A locus are amongst the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases, however the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: 'long' and 'short', but their functions remain unknown, partly due to a lack of isoform conservation in mice. We performed in-depth characterisation of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate RhoGAP activity of this domain. In Xenopus laevis, which conserve the long isoform, Fam13a-deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long isoform deficiency did not affect multiciliogenesis but reduced cilia co-ordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform co-ordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance. This article is open access and distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

2.
Nat Commun ; 14(1): 4191, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443155

ABSTRACT

Active fluids, like all other fluids, exert mechanical pressure on confining walls. Unlike equilibrium, this pressure is generally not a function of the fluid state in the bulk and displays some peculiar properties. For example, when activity is not uniform, fluid regions with different activity may exert different pressures on the container walls but they can coexist side by side in mechanical equilibrium. Here we show that by spatially modulating bacterial motility with light, we can generate active pressure gradients capable of transporting passive probe particles in controlled directions. Although bacteria swim faster in the brighter side, we find that bacteria in the dark side apply a stronger pressure resulting in a net drift motion that points away from the low activity region. Using a combination of experiments and numerical simulations, we show that this drift originates mainly from an interaction pressure term that builds up due to the compression exerted by a layer of polarized cells surrounding the slow region. In addition to providing new insights into the generalization of pressure for interacting systems with non-uniform activity, our results demonstrate the possibility of exploiting active pressure for the controlled transport of microscopic objects.


Subject(s)
Swimming , Pressure , Motion
3.
J Exp Biol ; 223(Pt 24)2020 12 29.
Article in English | MEDLINE | ID: mdl-33376093

ABSTRACT

In many organs, thousands of microscopic 'motile cilia' beat in a coordinated fashion generating fluid flow. Physiologically, these flows are important in both development and homeostasis of ciliated tissues. Combining experiments and simulations, we studied how cilia from brain tissue align their beating direction. We subjected cilia to a broad range of shear stresses, similar to the fluid flow that cilia themselves generate, in a microfluidic setup. In contrast to previous studies, we found that cilia from mouse ependyma respond and align to these physiological shear stress at all maturation stages. Cilia align more easily earlier in maturation, and we correlated this property with the increase in multiciliated cell density during maturation. Our numerical simulations show that cilia in densely packed clusters are hydrodynamically screened from the external flow, in agreement with our experimental observation. Cilia carpets create a hydrodynamic screening that reduces the susceptibility of individual cilia to external flows.


Subject(s)
Brain , Cilia , Animals , Hydrodynamics , Mice , Stress, Mechanical
4.
Proc Natl Acad Sci U S A ; 117(15): 8315-8325, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32217737

ABSTRACT

Motile cilia are widespread across the animal and plant kingdoms, displaying complex collective dynamics central to their physiology. Their coordination mechanism is not generally understood, with previous work mainly focusing on algae and protists. We study here the entrainment of cilia beat in multiciliated cells from brain ventricles. The response to controlled oscillatory external flows shows that flows at a similar frequency to the actively beating cilia can entrain cilia oscillations. We find that the hydrodynamic forces required for this entrainment strongly depend on the number of cilia per cell. Cells with few cilia (up to five) can be entrained at flows comparable to cilia-driven flows, in contrast with what was recently observed in Chlamydomonas Experimental trends are quantitatively described by a model that accounts for hydrodynamic screening of packed cilia and the chemomechanical energy efficiency of the flagellar beat. Simulations of a minimal model of cilia interacting hydrodynamically show the same trends observed in cilia.


Subject(s)
Cilia/physiology , Mammals/physiology , Animals , Brain/physiology , Chlamydomonas/chemistry , Chlamydomonas/physiology , Hydrodynamics , Models, Biological
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1792): 20190152, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31884919

ABSTRACT

Coordinated motion of cilia is a fascinating and vital aspect of very diverse forms of eukaryotic life, enabling swimming and propulsion of fluid across cellular epithelia. There are many questions still unresolved, and broadly they fall into two classes. (i) The mechanism of how cilia physically transmit forces onto each other. It is not known for many systems if the forces are mainly of hydrodynamical origin, or if elastic forces within the cytoskeleton are important. (ii) In those systems where we know that forces are purely hydrodynamical, we do not have a framework for linking our understanding of how each cilium behaves in isolation to the collective properties of two or more cilia. In this work, we take biological data of cilia dynamics from a variety of organisms as an input for an analytical and numerical study. We calculate the relative importance of external flows versus internal cilia flows on cilia coupling. This study contributes to both the open questions outlined above: firstly, we show that it is, in general, incorrect to infer cilium-cilium coupling strength on the basis of experiments with external flows, and secondly, we show a framework to recapitulate the dynamics of single cilia (the waveform) showing classes that correspond to biological systems with the same physiological activity (swimming by propulsion, versus forming collective waves). This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.


Subject(s)
Chlamydomonas/physiology , Cilia/physiology , Eukaryotic Cells/physiology , Hydrodynamics , Volvox/physiology , Animals , Epithelial Cells/physiology , Lung , Mice , Models, Biological
6.
Nutrients ; 11(10)2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31554163

ABSTRACT

BACKGROUND: Taste loss is a significant problem in older adults, affecting quality of life and nutrition. Altered salivary rheology and loss of mucin function may contribute to taste loss by reducing mucosal defences in the oral cavity, impairing sensitivity to oral stimulants. This study aimed to investigate the effects of salivary rheology on taste loss in ageing. Salivary mucin glycosylation and binding to the oral epithelium was investigated in older and younger adults. A cell-based model was utilised to consider the role of saliva in taste loss. METHODS: Human subjects aged >60 years (n = 25) and 18-30 (n = 30) provided saliva samples which were analysed for viscosity, mucin composition and mucin binding to oral epithelial cells (TR146/MUC1). Oral epithelial cells (TR146/MUC1 and SCC090) provided models for taste receptor activation. RESULTS: Reduced levels and sialylation of MUC7 were evident in saliva of older adults which may lead to reduced viscoelasticity, while viscosity is unaffected. Impaired muco-adhesion of saliva from older adults was also observed. Saliva from older adults facilitated the bitter taste receptor activation less well than saliva from younger adults. The causes of taste dysfunction in older adults are unknown, but this study supports a role of saliva in facilitating the activation of taste receptors.


Subject(s)
Epithelial Cells/metabolism , Mucins/metabolism , Saliva/chemistry , Taste/physiology , Adolescent , Adult , Aged , Aging , Cell Line , Female , Glycosylation , Humans , Male , Middle Aged , Mucins/chemistry , N-Acetylneuraminic Acid , Plasmids , Protein Binding , Rheology , Young Adult
7.
Phys Rev Lett ; 113(23): 238303, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25526168

ABSTRACT

We study experimentally and numerically the dynamics of colloidal beads confined by a harmonic potential in a bath of swimming E. coli bacteria. The resulting dynamics is well approximated by a Langevin equation for an overdamped oscillator driven by the combination of a white thermal noise and an exponentially correlated active noise. This scenario leads to a simple generalization of the equipartition theorem resulting in the coexistence of two different effective temperatures that govern dynamics along the flat and the curved directions in the potential landscape.

SELECTION OF CITATIONS
SEARCH DETAIL
...