Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38179578

ABSTRACT

Quantum annealing is a specialized type of quantum computation that aims to use quantum fluctuations in order to obtain global minimum solutions of combinatorial optimization problems. Programmable D-Wave quantum annealers are available as cloud computing resources, which allow users low-level access to quantum annealing control features. In this article, we are interested in improving the quality of the solutions returned by a quantum annealer by encoding an initial state into the annealing process. We explore twoD-Wave features that allow one toencode such an initialstate: the reverse annealing (RA) and theh-gain(HG)features.RAaimstorefineaknownsolutionfollowinganannealpathstartingwithaclassical state representing a good solution, going backward to a point where a transverse field is present, and then finishing the annealing process with a forward anneal. The HG feature allows one to put a time-dependent weighting scheme on linear (h) biases of the Hamiltonian, and we demonstrate that this feature likewise can be used to bias the annealing to start from an initial state. We also consider a hybrid method consisting of a backward phase resembling RA and a forward phase using the HG initial state encoding. Importantly, we investigate the idea of iteratively applying RA and HG to a problem, with the goal of monotonically improving on an initial state that is not optimal. The HG encoding technique is evaluated on a variety of input problems including the edge-weighted maximum cut problem and the vertex-weighted maximum clique problem, demonstrating that the HG technique is a viable alternative to RA for some problems. We also investigate how the iterative procedures perform for both RA and HG initial state encodings on random whole-chip spin glasses with the native hardware connectivity of the D-Wave Chimera and Pegasus chips.

2.
Sci Rep ; 12(1): 8539, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35595786

ABSTRACT

Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., [Formula: see text]) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor's with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.

3.
Sci Rep ; 12(1): 4499, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35296721

ABSTRACT

Quantum annealers of D-Wave Systems, Inc., offer an efficient way to compute high quality solutions of NP-hard problems. This is done by mapping a problem onto the physical qubits of the quantum chip, from which a solution is obtained after quantum annealing. However, since the connectivity of the physical qubits on the chip is limited, a minor embedding of the problem structure onto the chip is required. In this process, and especially for smaller problems, many qubits will stay unused. We propose a novel method, called parallel quantum annealing, to make better use of available qubits, wherein either the same or several independent problems are solved in the same annealing cycle of a quantum annealer, assuming enough physical qubits are available to embed more than one problem. Although the individual solution quality may be slightly decreased when solving several problems in parallel (as opposed to solving each problem separately), we demonstrate that our method may give dramatic speed-ups in terms of the Time-To-Solution (TTS) metric for solving instances of the Maximum Clique problem when compared to solving each problem sequentially on the quantum annealer. Additionally, we show that solving a single Maximum Clique problem using parallel quantum annealing reduces the TTS significantly.

SELECTION OF CITATIONS
SEARCH DETAIL
...