Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 13(4)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36547530

ABSTRACT

Enzymatic biofuel cells (EBCs) represent a promising technology for biosensors, biodevices, and sustainable green energy applications, thanks to enzymes' high specificity and catalytic efficiency. Nevertheless, drawbacks such as limited output power and short lifetime have to be solved. Nowadays, research is addressed to the use of 3D electrode structures, but the high cost and the industrialization difficulties of such electrodes represent a key issue. The purpose of the paper is thus to describe the use of a low-cost commercial conductive polymer (Sigracell® PV15) as support for the covalent immobilization of glucose oxidase and laccase, for bioanode and biocathode fabrication, respectively. Efficient immobilization protocols were determined for the immobilized enzymes in terms of employed linkers and enzyme concentrations, resulting in significant enzymatic activities for units of area. The analysis focuses specifically on the optimization of the challenging immobilization of laccase and assessing its stability over time. In particular, an optimum activity of 23 mU/cm2 was found by immobilizing 0.18 mg/cm2 of laccase, allowing better performances, as for voltage output and electrochemical stability, and a direct electron transfer mechanism to be revealed for the fabricated biocathode. This study thus poses the basis for the viable development of low-cost functional EBC devices for biomedical applications.

2.
Open Res Eur ; 2: 40, 2022.
Article in English | MEDLINE | ID: mdl-38779513

ABSTRACT

Background: Wave energy represents one of the most promising renewable energies due to its great theoretical potential. Nevertheless, the electrical compliance of grid-connected systems is a great issue nowadays, due to the highly stochastic nature of wave energy. Methods: In this paper, a Hybrid Energy Storage System (HESS) consisting of a Li-ion battery and a flywheel is coupled to a Wave Energy Converter (WEC) that operates in grid connected mode. The study is performed using real yearly wave power profiles relating to three different sites located along the European coasts. The Simultaneous Perturbation Stochastic Approximation (SPSA) principle is implemented as real-time power management strategy for HESS in wave energy conversion systems. Results: Obtained results demonstrate how the proposed HESS and the implementation of the SPSA power management coupled to a WEC allow a reduction of more than 80% of power oscillations at the Point of Common Coupling (PCC), while proving the robustness of the developed management strategy over the investigated sites. Moreover, the average energy penalty due to the HESS integration results slightly higher than 5% and battery solicitation is reduced by more than 64% with respect to the flywheel solicitation, contributing to extend its lifetime. Conclusions: HESS integration in renewable generation systems maximizes the WEC production while smoothing the power at the PCC. Specifically, flywheel-battery HESS together with the implemented power management strategy could provide a great flexibility in the view of increasing power production from waves, strongly mitigating the variability of this source while enhancing grid safety and stability.

SELECTION OF CITATIONS
SEARCH DETAIL
...