Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 7238, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38538690

ABSTRACT

Thirty-five women were included in a clinical study to characterize the volatile organic compounds (VOCs) emitted by the skin during exposure to psychological stress. An original silicon-based polymeric phase was used for VOC sampling on the forehead before and after stress induction. Cognitive stress was induced using specialized software that included a chronometer for semantic and arithmetic tasks. Assessment of stress was monitored using a State-trait anxiety inventory questionnaire, analysis of participants' verbal expressions and clinical measurements. Identification and relative quantification of VOCs were performed by gas chromatography-mass spectrometry. Stress induction was validated by a significant increase in state-anxiety as indicated by the questionnaire, modifications in electrodermal activity measurements and the expression of stress verbatims. In parallel, a sebum production increase and a skin pH decrease were observed. A total of 198 VOCs with different potential sources were identified. They were categorized in 5 groups: probable cosmetic composition, VOCs produced by the body or its microbiota, environmental origin, and dietary intake. In our qualitative statistical approach, three VOCs were found to be correlated with stress induction and 14 compounds showed significance in the paired Wilcoxon test. Fatty-acyls derived from lipids were predominantly identified as well as ethylbenzenes.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Humans , Female , Volatile Organic Compounds/analysis , Gas Chromatography-Mass Spectrometry , Skin/metabolism , Stress, Psychological , Air Pollutants/analysis , Environmental Monitoring
2.
Brain Behav Immun ; 117: 330-346, 2024 03.
Article in English | MEDLINE | ID: mdl-38309640

ABSTRACT

Nutrient composition in obesogenic diets may influence the severity of disorders associated with obesity such as insulin-resistance and chronic inflammation. Here we hypothesized that obesogenic diets rich in fat and varying in fatty acid composition, particularly in omega 6 (ω6) to omega 3 (ω3) ratio, have various effects on energy metabolism, neuroinflammation and behavior. Mice were fed either a control diet or a high fat diet (HFD) containing either low (LO), medium (ME) or high (HI) ω6/ω3 ratio. Mice from the HFD-LO group consumed less calories and exhibited less body weight gain compared to other HFD groups. Both HFD-ME and HFD-HI impaired glucose metabolism while HFD-LO partly prevented insulin intolerance and was associated with normal leptin levels despite higher subcutaneous and perigonadal adiposity. Only HFD-HI increased anxiety and impaired spatial memory, together with increased inflammation in the hypothalamus and hippocampus. Our results show that impaired glucose metabolism and neuroinflammation are uncoupled, and support that diets with a high ω6/ω3 ratio are associated with neuroinflammation and the behavioral deterioration coupled with the consumption of diets rich in fat.


Subject(s)
Insulins , Neuroinflammatory Diseases , Animals , Mice , Obesity/metabolism , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Inflammation , Glucose
3.
J Lipid Res ; 64(3): 100343, 2023 03.
Article in English | MEDLINE | ID: mdl-36773847

ABSTRACT

Evaluating lipid profiles in human tissues and biofluids is critical in identifying lipid metabolites in dysregulated metabolic pathways. Due to various chemical characteristics, single-run lipid analysis has not yet been documented. Such approach is essential for analyzing pathology-related lipid metabolites. Age-related macular degeneration, the leading cause of vision loss in western countries, is emblematic of this limitation. Several studies have identified alterations in individual lipids but the majority are based on targeted approaches. In this study, we analyzed and identified approximately 500 lipid species in human biofluids (plasma and erythrocytes) and ocular tissues (retina and retinal pigment epithelium) using the complementarity of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase chromatography (RPC), coupled to high-resolution mass spectrometry. For that, lipids were extracted from human eye globes and blood from 10 subjects and lipidomic analysis was carried out through analysis in HILIC and RPC, alternately. Furthermore, we illustrate the advantages and disadvantages of both techniques for lipid characterization. RPC showed greater sensitivity in hydrophobicity-based lipid separation, detecting diglycerides, triglycerides, cholesterol, and cholesteryl esters, whereas no signal of these molecules was obtained in HILIC. However, due to coelution, RPC was less effective in separating polar lipids like phospholipids, which were separated effectively in HILIC in both ionization modes. The complementary nature of these analytical approaches was essential for the detection and identification of lipid classes/subclasses, which can then provide distinct insights into lipid metabolism, a determinant of the pathophysiology of several diseases involving lipids, notably age-related macular degeneration.


Subject(s)
Lipidomics , Macular Degeneration , Humans , Lipidomics/methods , Mass Spectrometry/methods , Chromatography, Liquid/methods , Phospholipids
4.
J Neurosci Methods ; 376: 109625, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35653896

ABSTRACT

Background Apathy is a common behavioral syndrome that occurs across neurological and psychiatric disorders. An influential theoretical framework defined apathy as the quantitative reduction of self-generated voluntary and purposeful behaviors. There is evidence in the literature of the multidimensional nature of apathy with cognitive, behavioral, and emotional dimensions. To date, apathy has been assessed using various scales and questionnaires. Alternative objective and ecological measurements of apathy are needed. New method We used the ECOCAPTURE protocol and an ethological approach to investigate behavior in bvFTD patients under ecological conditions (a waiting room) while they freely explored a novel environment. Data were collected by behavioral coding from 7-minute video using an ethogram and transformed into behavior time series data. We present an approach considering behavioral kinetics to assess behavior. We aimed to construct a new behavior analysis method, called ECOCAPTURE kinetics, using temporal classification for behavior time series data analysis. To develop our classifier, we retained a nonelastic Euclidian metric, combined with a convolutional approach. Results We applied the ECOCAPTURE kinetics method to a cohort of 20 bvFTD patients and 18 healthy controls. We showed that bvFTD patients can be classified according to their behavioral kinetics into three groups. Each subgroup was characterized by specific behavior disorders and neuropsychological profile. Comparison with Existing Method(s) The ECOCAPTURE kinetics method is different from those of the classical approach of measuring behavior, producing time budgets, frequency of behavior occurrences, or kinematic diagrams. Conclusions This approach can be extended to any behavioral study encoding time.


Subject(s)
Apathy , Frontotemporal Dementia , Humans , Neuropsychological Tests , Time Factors
5.
Appl Microbiol Biotechnol ; 106(1): 415-424, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34889989

ABSTRACT

Microbial food spoilage is an important cause of health and economic issues and can occur via resilient contamination of food surfaces. Novel technologies, such as the use of visible light, have seen the light of day to overcome the drawbacks associated with surface disinfection treatments. However, most studies report that photo-inactivation of microorganisms with visible light requires long time treatments. In the present study, a novel light electroluminescent diode (LED)-based device was designed to generate irradiation at an ultra-high power density (901.1 mW/cm2). The efficacy of this technology was investigated with the inactivation of the yeast S. cerevisiae. Short-time treatments (below 10 min) at 405 nm induced a ~4.5 log reduction rate of the cultivable yeast population. The rate of inactivation was positively correlated to the overall energy received by the sample and, at a similar energy, to the power density dispatched by the lamp. A successful disinfection of several food contact surfaces (stainless steel, glass, polypropylene, polyethylene) was achieved as S. cerevisiae was completely inactivated within 5 min of treatments. The disinfection of stainless steel was particularly effective with a complete inactivation of the yeast after 2 min of treatment. This ultra-high irradiance technology could represent a novel cost- and time-effective candidate for microbial inactivation of food surfaces. These treatments could see applications beyond the food industry, in segments such as healthcare or public transport. KEY POINTS : • A novel LED-based device was designed to emit ultra-high irradiance blue light • Short time treatments induced high rate of inhibition of S. cerevisiae • Multiple food contact surfaces were entirely disinfected with 5-min treatments.


Subject(s)
Antifungal Agents , Saccharomyces cerevisiae , Disinfection , Light , Microbial Viability
6.
Front Microbiol ; 11: 899, 2020.
Article in English | MEDLINE | ID: mdl-32477306

ABSTRACT

During industrial yeast production, cells are often subjected to deleterious hydric variations during dehydration, which reduces their viability and cellular activity. This study is focused on the yeast Lachancea thermotolerans, particularly sensitive to dehydration. The aim was to understand the modifications of single-cells biophysical profiles during different dehydration conditions. Infrared spectra of individual cells were acquired before and after dehydration kinetics using synchrotron radiation-based Fourier-transform infrared (S-FTIR) microspectroscopy. The cells were previously stained with fluorescent probes in order to measure only viable and active cells prior to dehydration. In parallel, cell viability was determined using flow cytometry under identical conditions. The S-FTIR analysis indicated that cells with the lowest viability showed signs of membrane rigidification and modifications in the amide I (α-helix and ß-sheet) and amide II, which are indicators of secondary protein structure conformation and degradation or disorder. Shift of symmetric C-H stretching vibration of the CH2 group upon a higher wavenumber correlated with better cell viability, suggesting a role of plasma membrane fluidity. This was the first time that the biophysical responses of L. thermotolerans single-cells to dehydration were explored with S-FTIR. These findings are important for clarifying the mechanisms of microbial resistance to stress in order to improve the viability of sensitive yeasts during dehydration.

7.
Cryobiology ; 91: 69-76, 2019 12.
Article in English | MEDLINE | ID: mdl-31678178

ABSTRACT

During slow freezing, spermatozoa undergo membrane alterations that compromise their ability of fertilizing. These alterations are cause either by cold shock or by the use of cryoprotectants known to be cytotoxic. However, little is known about the membrane changes that occurred during freezing. Here, we combined Generalized Polarization (GP), Time-resolved Fluorescence and laurdan fluorescence properties to investigate the changes in membrane fluidity and dynamics during slow freezing of bull sperm. We successfully demonstrated that laurdan may be distributed in three different local environments that correspond to different membrane lipid composition. These environments wont behave the same way when the cells will be subjected to either a chemical treatment (adding the cryoprotectants) or a physical treatment (freezing).


Subject(s)
2-Naphthylamine/analogs & derivatives , Cell Membrane/physiology , Cryopreservation/methods , Laurates/chemistry , Membrane Fluidity/physiology , Spermatozoa/physiology , 2-Naphthylamine/chemistry , Animals , Cattle , Cryoprotective Agents/pharmacology , Fluorescence , Freezing , Male , Sperm Motility/physiology
8.
Methods Appl Fluoresc ; 7(3): 035004, 2019 May 16.
Article in English | MEDLINE | ID: mdl-30974420

ABSTRACT

A multivariate image is an image stack in which each pixel contains several variables. Such images are common in many fields (medicine, imaging microscopy, satellite imaging...) and their analysis requires adapted multivariate statistical methods. In fluorescence imaging microscopy, different probes or different measurements such as intensity, fluorescence lifetime or spectral information can be observed from one view. However, this is not yet analysed as multivariate images. Here, we are presenting a full approach of multivariate analysis of fluorescence microscopy images and we are proposing a free R package (multifluo) to conduct it.

9.
Front Microbiol ; 10: 3122, 2019.
Article in English | MEDLINE | ID: mdl-32082270

ABSTRACT

Bacterial spores are extremely resistant life-forms that play an important role in food spoilage and foodborne disease. The return of spores to a vegetative cell state is a three-step process, these being activation, germination, and emergence. High-pressure (HP) processing is known to induce germination in part of the spore population and even to inactivate a high number of Bacillus spores when combined with other mild treatments such as the addition of nisin. The aim of the present work was to investigate the mechanisms involved in the sensitization of spores to nisin following HP treatment at ambient temperature or with moderate heating leading to a heterogeneous spore response. Bacillus subtilis spores were subjected to HP treatment at 500 MPa at 20 and 50°C. The physiological state of different subpopulations was characterized. Then Fourier transform infrared (FTIR) microspectroscopy coupled to a synchrotron infrared source was used to explore the heterogeneity of the biochemical signatures of the spores after the same HP treatments. Our results confirm that HP at 50°C induces the germination of a large proportion of the spore population. HP treatment at 20°C generated a subpopulation of ungerminated spores reversibly sensitized to the presence of nisin in their growth medium. Regarding infrared spectra of individual spores, spores treated by HP at 50°C and germinated spores had similar spectral signatures involving the same structural properties. However, after HP was performed at 20°C, two groups of spores were distinguished; one of these groups was clearly identified as germinated spores. The second group displayed a unique spectral signature, with shifts in the spectral bands corresponding to changes in membrane fluidity. Besides, spores spectra in the amide region could be divided into several groups close to spectral properties of dormant, germinated, or inactivated spores. The part of the spectra corresponding to α-helix and ß-sheet-structures contribute mainly to the spectral variation between spores treated by HP at 20°C and other populations. These changes in the lipid and amide regions could be the signature of reversible changes linked to spore activation.

10.
Front Microbiol ; 9: 475, 2018.
Article in English | MEDLINE | ID: mdl-29593704

ABSTRACT

Because of the ability of foodborne pathogens to survive in low-moisture foods, their decontamination is an important issue in food protection. This study aimed to clarify some of the cellular mechanisms involved in inactivation of foodborne pathogens after drying and subsequent heating. Individual strains of Salmonella Typhimurium, Salmonella Senftenberg, and Cronobacter sakazakii were mixed into whole milk powder and dried to different water activity levels (0.25 and 0.58); the number of surviving cells was determined after drying and subsequent thermal treatments in closed vessels at 90 and 100°C, for 30 and 120 s. For each condition, the percentage of unculturable cells was estimated and, in parallel, membrane permeability and respiratory activity were estimated by flow cytometry using fluorescent probes. After drying, it was clearly observable that the percentage of unculturable cells was correlated with the percentage of permeabilized cells (responsible for 20-40% of the total inactivated bacteria after drying), and to a lesser degree with the percentage of cells presenting with loss of respiratory activity. In contrast, the percentages of unculturable cells observed after heat treatment were strongly correlated with the loss of respiratory activity and weakly with membrane permeability (for 70-80% of the total inactivated bacteria after heat treatment). We conclude that cell inactivation during drying is closely linked to membrane permeabilization and that heat treatment of dried cells affects principally their respiratory activity. These results legitimize the use of time-temperature scales and allow better understanding of the cellular mechanisms of bacterial death during drying and subsequent heat treatment. These results may also allow better optimization of the decontamination process to ensure food safety by targeting the most deleterious conditions for bacterial cells without denaturing the food product.

SELECTION OF CITATIONS
SEARCH DETAIL
...