Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464267

ABSTRACT

Retrotransposons are viral-like DNA sequences that constitute approximately 41% of the human genome. Studies in Drosophila, mice, cultured cells, and human brain indicate that retrotransposons are activated in settings of tauopathy, including Alzheimer's disease, and causally drive neurodegeneration. The anti-retroviral medication 3TC (lamivudine), a nucleoside analog reverse transcriptase inhibitor, limits retrotransposon activation and suppresses neurodegeneration in tau transgenic Drosophila, two mouse models of tauopathy, and in brain assembloids derived from patients with sporadic Alzheimer's disease. We performed a 24-week phase 2a open-label clinical trial of 300 mg daily oral 3TC (NCT04552795) in 12 participants aged 52-83 years with a diagnosis of mild cognitive impairment due to suspected Alzheimer's disease. Primary outcomes included feasibility, blood brain barrier penetration, effects of 3TC on reverse transcriptase activity in the periphery, and safety. Secondary outcomes included changes in cognition and fluid-based biomarkers of neurodegeneration and neuroinflammation. All participants completed the six-month trial; one event of gastrointestinal bleeding due to a peptic ulcer was reported. 3TC was detected in blood and cerebrospinal fluid (CSF) of all participants, suggestive of adherence to study drug and effective brain penetration. Cognitive measures remained stable throughout the study. Glial fibrillary acidic protein (GFAP) (P=0.03) and Flt1 (P=0.05) were significantly reduced in CSF over the treatment period; Aß42/40 (P=0.009) and IL-15 (P=0.006) were significantly elevated in plasma. While this is an open label study of small sample size, the significant decrease of some neurodegeneration- and neuroinflammation-related biomarkers in CSF, significantly elevated levels of plasma Aß42/40, and a trending decrease of CSF NfL after six months of 3TC exposure suggest a beneficial effect on subjects with mild cognitive impairment due to suspected Alzheimer's disease. Feasibility, safety, tolerability, and central nervous system (CNS) penetration assessments further support clinical evaluation of 3TC in a larger placebo-controlled, multi-dose clinical trial.

2.
Clin Cancer Res ; 29(14): 2651-2667, 2023 07 14.
Article in English | MEDLINE | ID: mdl-36780194

ABSTRACT

PURPOSE: Anaplastic lymphoma kinase (ALK) aberrations have been identified in pediatric-type infant gliomas, but their occurrence across age groups, functional effects, and treatment response has not been broadly established. EXPERIMENTAL DESIGN: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric, and 10 congenital) with in vitro and in vivo validation of aberrations. RESULTS: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0-80 years). Recurrent as well as novel ALK fusions (LRRFIP1-ALK, DCTN1-ALK, PRKD3-ALK) were present in 50% (5/10) of congenital/infant, 1.4% (3/205) of pediatric, and 1.9% (3/156) of adult GBMs. ALK fusions were present as the only candidate driver in congenital/infant GBMs and were sometimes focally amplified. In contrast, adult ALK fusions co-occurred with other oncogenic drivers. No activating ALK mutations were identified in any age group. Novel and recurrent ALK rearrangements promoted STAT3 and ERK1/2 pathways and transformation in vitro and in vivo. ALK-fused GBM cellular and mouse models were responsive to ALK inhibitors, including in patient cells derived from a congenital GBM. Relevant to the treatment of infant gliomas, we showed that ALK protein appears minimally expressed in the forebrain at perinatal stages, and no gross effects on perinatal brain development were seen in pregnant mice treated with the ALK inhibitor ceritinib. CONCLUSIONS: These findings support use of brain-penetrant ALK inhibitors in clinical trials across infant, pediatric, and adult GBMs. See related commentary by Mack and Bertrand, p. 2567.


Subject(s)
Glioblastoma , Glioma , Mice , Animals , Anaplastic Lymphoma Kinase/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Retrospective Studies , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Glioma/drug therapy
3.
Am J Pathol ; 192(11): 1592-1603, 2022 11.
Article in English | MEDLINE | ID: mdl-35985479

ABSTRACT

Appropriate coordination of smooth muscle contraction and relaxation is essential for normal colonic motility. The impact of perturbed motility ranges from moderate, in conditions such as colitis, to potentially fatal in the case of pseudo-obstruction. The mechanisms underlying aberrant motility and the extent to which they can be targeted pharmacologically are incompletely understood. This study identified colonic smooth muscle as a major site of expression of neuropilin 2 (Nrp2) in mice and humans. Mice with inducible smooth muscle-specific knockout of Nrp2 had an increase in evoked contraction of colonic rings in response to carbachol at 1 and 4 weeks following initiation of deletion. KCl-induced contractions were also increased at 4 weeks. Colonic motility was similarly enhanced, as evidenced by faster bead expulsion in Nrp2-deleted mice versus Nrp2-intact controls. In length-tension analysis of the distal colon, passive tension was similar in Nrp2-deficient and Nrp2-intact mice, but at low strains, active stiffness was greater in Nrp2-deficient animals. Consistent with the findings in conditional Nrp2 mice, Nrp2-null mice showed increased contractility in response to carbachol and KCl. Evaluation of selected proteins implicated in smooth muscle contraction revealed no significant differences in the level of α-smooth muscle actin, myosin light chain, calponin, or RhoA. Together, these findings identify Nrp2 as a novel regulator of colonic contractility that may be targetable in conditions characterized by dysmotility.


Subject(s)
Colon , Gastrointestinal Motility , Muscle Contraction , Muscle, Smooth , Neuropilin-2 , Animals , Humans , Mice , Carbachol/pharmacology , Colon/metabolism , Colon/physiology , Mice, Knockout , Muscle Contraction/drug effects , Muscle Contraction/genetics , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/genetics
4.
Cancer Res ; 82(17): 2980-3001, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35802025

ABSTRACT

Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.


Subject(s)
Forkhead Transcription Factors , Neoplasms , Adult , Carcinogenesis/genetics , Cell Proliferation , Child , Epigenesis, Genetic , Forkhead Transcription Factors/genetics , Humans , Male , Neoplasms/genetics , Oncogenes/genetics , Proto-Oncogene Proteins c-ets/genetics , Proto-Oncogene Proteins c-ets/metabolism , Transcriptional Activation
5.
Neurooncol Adv ; 4(1): vdac049, 2022.
Article in English | MEDLINE | ID: mdl-35669012

ABSTRACT

Background: Pediatric gliomas comprise a diverse set of brain tumor entities that have substantial long-term ramifications for patient survival and quality of life. However, the study of these tumors is currently limited due to a lack of authentic models. Additionally, many aspects of pediatric brain tumor biology, such as tumor cell invasiveness, have been difficult to study with currently available tools. To address these issues, we developed a synthetic extracellular matrix (sECM)-based culture system to grow and study primary pediatric brain tumor cells. Methods: We developed a brain-like sECM material as a supportive scaffold for the culture of primary, patient-derived pediatric glioma cells and established patient-derived cell lines. Primary juvenile brainstem-derived murine astrocytes were used as a feeder layer to support the growth of primary human tumor cells. Results: We found that our culture system facilitated the proliferation of various primary pediatric brain tumors, including low-grade gliomas, and enabled ex vivo testing of investigational therapeutics. Additionally, we found that tuning this sECM material allowed us to assess high-grade pediatric glioma cell invasion and evaluate therapeutic interventions targeting invasive behavior. Conclusion: Our sECM culture platform provides a multipurpose tool for pediatric brain tumor researchers that enables both a wide breadth of biological assays and the cultivation of diverse tumor types.

6.
Nat Commun ; 13(1): 604, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105861

ABSTRACT

The role of PPM1D mutations in de novo gliomagenesis has not been systematically explored. Here we analyze whole genome sequences of 170 pediatric high-grade gliomas and find that truncating mutations in PPM1D that increase the stability of its phosphatase are clonal driver events in 11% of Diffuse Midline Gliomas (DMGs) and are enriched in primary pontine tumors. Through the development of DMG mouse models, we show that PPM1D mutations potentiate gliomagenesis and that PPM1D phosphatase activity is required for in vivo oncogenesis. Finally, we apply integrative phosphoproteomic and functional genomics assays and find that oncogenic effects of PPM1D truncation converge on regulators of cell cycle, DNA damage response, and p53 pathways, revealing therapeutic vulnerabilities including MDM2 inhibition.


Subject(s)
Glioma/genetics , Mutation , Oncogenes/genetics , Protein Phosphatase 2C/genetics , Adolescent , Adult , Animals , Brain Stem Neoplasms/genetics , Carcinogenesis/genetics , Cell Cycle , Child , Child, Preschool , DNA Damage , Disease Models, Animal , Female , HEK293 Cells , Humans , Infant , Male , Mice , Proto-Oncogene Proteins c-mdm2 , Transcriptome , Tumor Suppressor Protein p53/genetics , Young Adult
7.
Cancer Cell ; 38(1): 44-59.e9, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32663469

ABSTRACT

Ependymoma is a heterogeneous entity of central nervous system tumors with well-established molecular groups. Here, we apply single-cell RNA sequencing to analyze ependymomas across molecular groups and anatomic locations to investigate their intratumoral heterogeneity and developmental origins. Ependymomas are composed of a cellular hierarchy initiating from undifferentiated populations, which undergo impaired differentiation toward three lineages of neuronal-glial fate specification. While prognostically favorable groups of ependymoma predominantly harbor differentiated cells, aggressive groups are enriched for undifferentiated cell populations. The delineated transcriptomic signatures correlate with patient survival and define molecular dependencies for targeted treatment approaches. Taken together, our analyses reveal a developmental hierarchy underlying ependymomas relevant to biological and clinical behavior.


Subject(s)
Central Nervous System Neoplasms/genetics , Ependymoma/genetics , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cell Differentiation/genetics , Cell Proliferation/genetics , Central Nervous System Neoplasms/pathology , Central Nervous System Neoplasms/therapy , Child , Ependymoma/pathology , Ependymoma/therapy , Genomics/methods , Humans , Neurons/metabolism , Neurons/pathology , Prognosis , Survival Analysis
8.
Nature ; 580(7804): 517-523, 2020 04.
Article in English | MEDLINE | ID: mdl-32322066

ABSTRACT

A high tumour mutational burden (hypermutation) is observed in some gliomas1-5; however, the mechanisms by which hypermutation develops and whether it predicts the response to immunotherapy are poorly understood. Here we comprehensively analyse the molecular determinants of mutational burden and signatures in 10,294 gliomas. We delineate two main pathways to hypermutation: a de novo pathway associated with constitutional defects in DNA polymerase and mismatch repair (MMR) genes, and a more common post-treatment pathway, associated with acquired resistance driven by MMR defects in chemotherapy-sensitive gliomas that recur after treatment with the chemotherapy drug temozolomide. Experimentally, the mutational signature of post-treatment hypermutated gliomas was recapitulated by temozolomide-induced damage in cells with MMR deficiency. MMR-deficient gliomas were characterized by a lack of prominent T cell infiltrates, extensive intratumoral heterogeneity, poor patient survival and a low rate of response to PD-1 blockade. Moreover, although bulk analyses did not detect microsatellite instability in MMR-deficient gliomas, single-cell whole-genome sequencing analysis of post-treatment hypermutated glioma cells identified microsatellite mutations. These results show that chemotherapy can drive the acquisition of hypermutated populations without promoting a response to PD-1 blockade and supports the diagnostic use of mutational burden and signatures in cancer.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/therapy , Glioma/genetics , Glioma/therapy , Mutation , Animals , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/immunology , DNA Mismatch Repair/genetics , Gene Frequency , Genome, Human/drug effects , Genome, Human/genetics , Glioma/immunology , Humans , Male , Mice , Microsatellite Repeats/drug effects , Microsatellite Repeats/genetics , Mutagenesis/drug effects , Mutation/drug effects , Phenotype , Prognosis , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Sequence Analysis, DNA , Temozolomide/pharmacology , Temozolomide/therapeutic use , Xenograft Model Antitumor Assays
9.
Nat Commun ; 10(1): 3731, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427603

ABSTRACT

Pilocytic astrocytoma (PA), the most common childhood brain tumor, is a low-grade glioma with a single driver BRAF rearrangement. Here, we perform scRNAseq in six PAs using methods that enabled detection of the rearrangement. When compared to higher-grade gliomas, a strikingly higher proportion of the PA cancer cells exhibit a differentiated, astrocyte-like phenotype. A smaller proportion of cells exhibit a progenitor-like phenotype with evidence of proliferation. These express a mitogen-activated protein kinase (MAPK) programme that was absent from higher-grade gliomas. Immune cells, especially microglia, comprise 40% of all cells in the PAs and account for differences in bulk expression profiles between tumor locations and subtypes. These data indicate that MAPK signaling is restricted to relatively undifferentiated cancer cells in PA, with implications for investigational therapies directed at this pathway.


Subject(s)
Astrocytoma/genetics , Astrocytoma/pathology , Brain Neoplasms/pathology , Neural Stem Cells/cytology , Proto-Oncogene Proteins B-raf/genetics , Animals , Brain Neoplasms/genetics , Humans , MAP Kinase Signaling System/genetics , Mice , Microglia/pathology , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Oligodendroglia/cytology , Oncogene Proteins, Fusion/metabolism , Tumor Cells, Cultured
10.
Cell ; 178(4): 835-849.e21, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31327527

ABSTRACT

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity. The relative frequency of cells in each state varies between glioblastoma samples and is influenced by copy number amplifications of the CDK4, EGFR, and PDGFRA loci and by mutations in the NF1 locus, which each favor a defined state. Our work provides a blueprint for glioblastoma, integrating the malignant cell programs, their plasticity, and their modulation by genetic drivers.


Subject(s)
Brain Neoplasms/genetics , Cell Plasticity/genetics , Glioblastoma/genetics , Adolescent , Aged , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Lineage/genetics , Child , Cohort Studies , Disease Models, Animal , Female , Genetic Heterogeneity , Glioblastoma/pathology , Heterografts , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Middle Aged , Mutation , RNA-Seq , Single-Cell Analysis/methods , Tumor Microenvironment/genetics
11.
J Clin Oncol ; 37(9): 741-750, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30715997

ABSTRACT

PURPOSE: Phosphatidylinositol 3-kinase (PI3K) signaling is highly active in glioblastomas. We assessed pharmacokinetics, pharmacodynamics, and efficacy of the pan-PI3K inhibitor buparlisib in patients with recurrent glioblastoma with PI3K pathway activation. METHODS: This study was a multicenter, open-label, multi-arm, phase II trial in patients with PI3K pathway-activated glioblastoma at first or second recurrence. In cohort 1, patients scheduled for re-operation after progression received buparlisib for 7 to 13 days before surgery to evaluate brain penetration and modulation of the PI3K pathway in resected tumor tissue. In cohort 2, patients not eligible for re-operation received buparlisib until progression or unacceptable toxicity. Once daily oral buparlisib 100 mg was administered on a continuous 28-day schedule. Primary end points were PI3K pathway inhibition in tumor tissue and buparlisib pharmacokinetics in cohort 1 and 6-month progression-free survival (PFS6) in cohort 2. RESULTS: Sixty-five patients were treated (cohort 1, n = 15; cohort 2, n = 50). In cohort 1, reduction of phosphorylated AKTS473 immunohistochemistry score was achieved in six (42.8%) of 14 patients, but effects on phosphoribosomal protein S6S235/236 and proliferation were not significant. Tumor-to-plasma drug level was 1.0. In cohort 2, four (8%) of 50 patients reached 6-month PFS6, and the median PFS was 1.7 months (95% CI, 1.4 to 1.8 months). The most common grade 3 or greater adverse events related to treatment were lipase elevation (n = 7 [10.8%]), fatigue (n = 4 [6.2%]), hyperglycemia (n = 3 [4.6%]), and elevated ALT (n = 3 [4.6%]). CONCLUSION: Buparlisib had minimal single-agent efficacy in patients with PI3K-activated recurrent glioblastoma. Although buparlisib achieved significant brain penetration, the lack of clinical efficacy was explained by incomplete blockade of the PI3K pathway in tumor tissue. Integrative results suggest that additional study of PI3K inhibitors that achieve more-complete pathway inhibition may still be warranted.


Subject(s)
Aminopyridines/therapeutic use , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Glioblastoma/drug therapy , Morpholines/therapeutic use , Neoadjuvant Therapy , Neoplasm Recurrence, Local , Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors/therapeutic use , Adult , Aged , Aged, 80 and over , Aminopyridines/adverse effects , Aminopyridines/pharmacokinetics , Antineoplastic Agents/adverse effects , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Chemotherapy, Adjuvant , Disease Progression , Enzyme Activation , Female , Glioblastoma/enzymology , Glioblastoma/pathology , Humans , Male , Middle Aged , Morpholines/adverse effects , Morpholines/pharmacokinetics , Neoadjuvant Therapy/adverse effects , Phosphoinositide-3 Kinase Inhibitors/adverse effects , Phosphoinositide-3 Kinase Inhibitors/pharmacokinetics , Progression-Free Survival , Time Factors
12.
Nature ; 565(7738): 234-239, 2019 01.
Article in English | MEDLINE | ID: mdl-30568305

ABSTRACT

Neoantigens, which are derived from tumour-specific protein-coding mutations, are exempt from central tolerance, can generate robust immune responses1,2 and can function as bona fide antigens that facilitate tumour rejection3. Here we demonstrate that a strategy that uses multi-epitope, personalized neoantigen vaccination, which has previously been tested in patients with high-risk melanoma4-6, is feasible for tumours such as glioblastoma, which typically have a relatively low mutation load1,7 and an immunologically 'cold' tumour microenvironment8. We used personalized neoantigen-targeting vaccines to immunize patients newly diagnosed with glioblastoma following surgical resection and conventional radiotherapy in a phase I/Ib study. Patients who did not receive dexamethasone-a highly potent corticosteroid that is frequently prescribed to treat cerebral oedema in patients with glioblastoma-generated circulating polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses that were enriched in a memory phenotype and showed an increase in the number of tumour-infiltrating T cells. Using single-cell T cell receptor analysis, we provide evidence that neoantigen-specific T cells from the peripheral blood can migrate into an intracranial glioblastoma tumour. Neoantigen-targeting vaccines thus have the potential to favourably alter the immune milieu of glioblastoma.


Subject(s)
Antigens, Neoplasm/immunology , Cancer Vaccines/immunology , Glioblastoma/immunology , Glioblastoma/therapy , T-Lymphocytes/immunology , Adult , Aged , DNA Methylation , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Dexamethasone/administration & dosage , Glioblastoma/diagnosis , Glioblastoma/genetics , Humans , Middle Aged , Promoter Regions, Genetic/genetics , Receptors, Antigen, T-Cell/immunology , Tumor Suppressor Proteins/genetics , Young Adult
13.
Genome Biol ; 19(1): 207, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30482222

ABSTRACT

Mass and growth rate are highly integrative measures of cell physiology not discernable via genomic measurements. Here, we introduce a microfluidic platform enabling direct measurement of single-cell mass and growth rate upstream of highly multiplexed single-cell profiling such as single-cell RNA sequencing. We resolve transcriptional signatures associated with single-cell mass and growth rate in L1210 and FL5.12 cell lines and activated CD8+ T cells. Further, we demonstrate a framework using these linked measurements to characterize biophysical heterogeneity in a patient-derived glioblastoma cell line with and without drug treatment. Our results highlight the value of coupled phenotypic metrics in guiding single-cell genomics.


Subject(s)
Cell Enlargement , Genomics/methods , Microfluidic Analytical Techniques , Single-Cell Analysis/methods , Animals , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Humans , Lymphocyte Activation , Mice
14.
Prostate Cancer Prostatic Dis ; 21(2): 196-203, 2018 06.
Article in English | MEDLINE | ID: mdl-29795142

ABSTRACT

BACKGROUND: Some, but not all, epidemiologic evidence supports a role for cholesterol, the precursor for steroid hormone synthesis, in prostate cancer. Using a PTEN-null transgenic mouse model of prostate cancer, we tested the effect of modifying serum cholesterol levels on prostate tumor development and growth. We hypothesized that serum cholesterol reduction would lower tumor androgens and slow prostate cancer growth. METHODS: PTENloxP/loxP-Cre+ mice consuming ad libitum high fat, high cholesterol diets (40% fat, 1.25% cholesterol) were randomized after weaning to receive the cholesterol uptake inhibitor, ezetimibe (30 mg/kg/day), or no intervention, and sacrificed at 2, 3, or 4 months of age. Serum cholesterol and testosterone were measured by ELISA and intraprostatic androgens by mass spectrometry. Prostate histology was graded, and proliferation and apoptosis in tumor epithelium and stroma was assessed by Ki67 and TUNEL, respectively. RESULTS: Ezetimibe-treated mice had lower serum cholesterol at 4 months (p = 0.031). Serum cholesterol was positively correlated with prostate weight (p = 0.033) and tumor epithelial proliferation (p = 0.069), and negatively correlated with tumor epithelial apoptosis (p = 0.004). Serum cholesterol was unrelated to body weight (p = 0.195). Tumor stromal cell proliferation was reduced in the ezetimibe group (p = 0.010). Increased serum cholesterol at 4 months was associated with elevated intraprostatic DHEA, testosterone, and androstenedione (p = 0.043, p = 0.074, p = 0.031, respectively). However, cholesterol reduction did not significantly affect adenocarcinoma development at 2, 3, or 4 months of age (0, 78, and 100% in ezetimibe-treated vs. 0, 80, and 100% in mice not receiving ezetimibe). CONCLUSIONS: Though serum cholesterol reduction did not significantly affect the rate of adenocarcinoma development in the PTEN-null transgenic mouse model of prostate cancer, it lowered intraprostatic androgens and slowed tumor growth. These findings support a role for serum cholesterol in promoting prostate cancer growth, potentially via enhanced tumor androgen signaling, and may provide new insight into cholesterol-lowering interventions for prostate cancer treatment.


Subject(s)
Adenocarcinoma/pathology , Cell Proliferation , Cholesterol/blood , Disease Models, Animal , PTEN Phosphohydrolase/physiology , Prostatic Neoplasms/pathology , Adenocarcinoma/blood , Animals , Apoptosis , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasm Invasiveness , Prostatic Neoplasms/blood
15.
Science ; 360(6386): 331-335, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29674595

ABSTRACT

Gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-glioma) arise primarily in the midline of the central nervous system of young children, suggesting a cooperation between genetics and cellular context in tumorigenesis. Although the genetics of H3K27M-glioma are well characterized, their cellular architecture remains uncharted. We performed single-cell RNA sequencing in 3321 cells from six primary H3K27M-glioma and matched models. We found that H3K27M-glioma primarily contain cells that resemble oligodendrocyte precursor cells (OPC-like), whereas more differentiated malignant cells are a minority. OPC-like cells exhibit greater proliferation and tumor-propagating potential than their more differentiated counterparts and are at least in part sustained by PDGFRA signaling. Our study characterizes oncogenic and developmental programs in H3K27M-glioma at single-cell resolution and across genetic subclones, suggesting potential therapeutic targets in this disease.


Subject(s)
Brain Neoplasms/pathology , Carcinogenesis/genetics , Glioma/pathology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Oncogenes , Brain Neoplasms/genetics , Cell Proliferation , Glioma/genetics , Histones/metabolism , Humans , Mitogen-Activated Protein Kinase 7/genetics , Mutation , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods
16.
Neuro Oncol ; 19(7): 908-917, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28339723

ABSTRACT

BACKGROUND: Biomarkers can improve clinical trial efficiency, but designing and interpreting biomarker-driven trials require knowledge of relationships among biomarkers, clinical covariates, and endpoints. We investigated these relationships across genomic subgroups of glioblastoma (GBM) within our institution (DF/BWCC), validated results in The Cancer Genome Atlas (TCGA), and demonstrated potential impacts on clinical trial design and interpretation. METHODS: We identified genotyped patients at DF/BWCC, and clinical associations across 4 common GBM genomic biomarker groups were compared along with overall survival (OS), progression-free survival (PFS), and survival post-progression (SPP). Significant associations were validated in TCGA. Biomarker-based clinical trials were simulated using various assumptions. RESULTS: Epidermal growth factor receptor (EGFR)(+) and p53(-) subgroups were more likely isocitrate dehydrogenase (IDH) wild-type. Phosphatidylinositol-3 kinase (PI3K)(+) patients were older, and patients with O6-DNA methylguanine-methyltransferase (MGMT)-promoter methylation were more often female. OS, PFS, and SPP were all longer for IDH mutant and MGMT methylated patients, but there was no independent prognostic value for other genomic subgroups. PI3K(+) patients had shorter PFS among IDH wild-type tumors, however, and no DF/BWCC long-term survivors were either EGFR(+) (0% vs 7%, P = .014) or p53(-) (0% vs 10%, P = .005). The degree of biomarker overlap impacted the efficiency of Bayesian-adaptive clinical trials, while PFS and OS distribution variation had less impact. Biomarker frequency was proportionally associated with sample size in all designs. CONCLUSIONS: We identified several associations between GBM genomic subgroups and clinical or molecular prognostic covariates and validated known prognostic factors in all survival periods. These results are important for biomarker-based trial design and interpretation of biomarker-only and nonrandomized trials.


Subject(s)
Biomarkers/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Clinical Trials as Topic , Databases, Chemical , Glioblastoma/diagnosis , Glioblastoma/genetics , Aged , Bayes Theorem , Endpoint Determination , Female , Genomics , Humans , Male , Middle Aged , Research Design , Signal Transduction
17.
Nat Genet ; 48(3): 273-82, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26829751

ABSTRACT

Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs, including 19 angiocentric gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in angiocentric gliomas. In vitro and in vivo functional studies show that MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression and hemizygous loss of the tumor suppressor QKI. To our knowledge, this represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.


Subject(s)
Glioma/genetics , Oncogene Proteins v-myb/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Proteins/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Child , Comparative Genomic Hybridization , Exome/genetics , Gene Expression Regulation, Neoplastic , Gene Rearrangement , Glioma/pathology , High-Throughput Nucleotide Sequencing , Humans , Mutation , Oncogene Proteins v-myb/biosynthesis , Oncogene Proteins, Fusion/biosynthesis , RNA-Binding Proteins/biosynthesis
18.
Clin Cancer Res ; 22(5): 1185-96, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26482041

ABSTRACT

PURPOSE: p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. EXPERIMENTAL DESIGN: We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCL), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. RESULTS: MDM2-amplified PDCLs were 44 times more sensitive than TP53-mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 µmol/L vs. 21.9 µmol/L). MDM4-amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 µmol/L), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 µmol/L). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. CONCLUSIONS: These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2-amplified models suggests that additional markers of response to MDM2 inhibitors must be identified.


Subject(s)
Glioblastoma/drug therapy , Imidazolines/administration & dosage , Proto-Oncogene Proteins c-mdm2/genetics , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/pathology , Humans , Mice , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
19.
Am J Pathol ; 184(7): 2099-110, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24952430

ABSTRACT

Obesity and metabolic syndrome are linked to an increased prevalence of breast cancer among postmenopausal women. A common feature of obesity, metabolic syndrome, and a Western diet rich in saturated fat is a high level of circulating cholesterol. Epidemiological reports investigating the relationship between high circulating cholesterol levels, cholesterol-lowering drugs, and breast cancer are conflicting. Here, we modeled this complex condition in a well-controlled, preclinical animal model using innovative isocaloric diets. Female severe combined immunodeficient mice were fed a low-fat/no-cholesterol diet and then randomized to four isocaloric diet groups: low-fat/no-cholesterol diet, with or without ezetimibe (cholesterol-lowering drug), and high-fat/high-cholesterol diet, with or without ezetimibe. Mice were implanted orthotopically with MDA-MB-231 cells. Breast tumors from animals fed the high-fat/high-cholesterol diet exhibited the fastest progression. Significant differences in serum cholesterol level between groups were achieved and maintained throughout the study; however, no differences were observed in intratumoral cholesterol levels. To determine the mechanism of cholesterol-induced tumor progression, we analyzed tumor proliferation, apoptosis, and angiogenesis and found a significantly greater percentage of proliferating cells from mice fed the high-fat/high-cholesterol diet. Tumors from hypercholesterolemic animals displayed significantly less apoptosis compared with the other groups. Tumors from high-fat/high-cholesterol mice had significantly higher microvessel density compared with tumors from the other groups. These results demonstrate that hypercholesterolemia induces angiogenesis and accelerates breast tumor growth in vivo.


Subject(s)
Hypercholesterolemia/pathology , Mammary Neoplasms, Experimental/pathology , Neovascularization, Pathologic/pathology , Animals , Apoptosis , Azetidines/pharmacology , Cell Line, Tumor , Cell Proliferation , Cholesterol/blood , Cholesterol, Dietary/adverse effects , Diet, High-Fat/adverse effects , Ezetimibe , Female , Humans , Mice, SCID , Neoplasm Transplantation
20.
Am J Pathol ; 181(3): 928-36, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22770664

ABSTRACT

A role for hypercholesterolemia in the development of osteoporosis has been suggested in published reports. However, few studies contain direct evidence of a role for maintenance of cholesterol homeostasis in bone health. Using isocaloric high-fat/high-cholesterol and low-fat/no-cholesterol diets in a 4-month feeding study combined with micro computed tomography analysis, we demonstrated in two different mouse strains that mice with hypercholesterolemia lose cortical and trabecular bone in the femurs and vertebrae (bone mineral density was decreased on average by ≈90 mg/mL in the cortical vertebrae in one strain) and cortical bone in the calvariae (bone mineral density was decreased on average by ≈60 mg/mL in one strain). Mechanical testing of the femurs demonstrated that loss of bone in the mice with hypercholesterolemia caused changes in the mechanical properties of the bone including loss of failure load (failure load was decreased by ≈10 N in one strain) and energy to failure. Serologic and histomorphologic analyses suggested that hypercholesterolemia promotes osteoclastogenesis. These studies support a role for hypercholesterolemia in the development of osteoporosis and provide a model with which to test intervention strategies to reduce the effects of hypercholesterolemia on bone health.


Subject(s)
Hypercholesterolemia/complications , Hypercholesterolemia/pathology , Osteoporosis/etiology , Osteoporosis/pathology , Animals , Biomechanical Phenomena , Body Weight , Bone Resorption/complications , Bone Resorption/diagnostic imaging , Bone Resorption/pathology , Bone Resorption/physiopathology , Dietary Fats/administration & dosage , Femur/diagnostic imaging , Femur/pathology , Femur/physiopathology , Hypercholesterolemia/blood , Hypercholesterolemia/physiopathology , Male , Mice , Mice, Inbred C57BL , Osteoclasts/pathology , Osteoporosis/blood , Osteoporosis/physiopathology , Phenotype , Radiography , Skull/diagnostic imaging , Skull/pathology , Skull/physiopathology , Spine/diagnostic imaging , Spine/pathology , Spine/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL