Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Sci ; 367(2): 128-134, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984736

ABSTRACT

Cardiovascular diseases (CVD) are the main causes of death in hemodialysis patients, representing a public health challenge. We investigated the effect of different antihypertensive treatments on circulating levels of renin-angiotensin system (RAS) components in end-stage renal disease (ESRD) patients on hemodialysis. ESRD patients were grouped following the prescribed antihypertensive drugs: ß-blocker, ß-blocker+ACEi and ß-blocker+AT1R blocker. ESDR patients under no antihypertensive drug treatment were used as controls. Blood samples were collected before hemodialysis sessions. Enzymatic activities of the angiotensin-converting enzymes ACE and ACE2 were measured through fluorescence assays and plasma concentrations of the peptides Angiotensin II (Ang II) and Angiotensin-(1-7) [Ang-(1-7)] were quantified using mass spectrometry (LC-MS/MS). ACE activity was decreased only in the ß-blocker+ACEi group compared to the ß-blocker+AT1R, while ACE2 activity did not change according to the antihypertensive treatment. Both Ang II and Ang-(1-7) levels also did not change according to the antihypertensive treatment. We concluded that the treatment of ESRD patients on hemodialysis with different antihypertensive drugs do not alter the circulating levels of RAS components.


Subject(s)
Antihypertensive Agents , Kidney Failure, Chronic , Humans , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Angiotensin-Converting Enzyme 2/pharmacology , Chromatography, Liquid , Tandem Mass Spectrometry , Renin-Angiotensin System , Peptidyl-Dipeptidase A/metabolism , Peptides/pharmacology , Kidney Failure, Chronic/drug therapy , Angiotensin II/pharmacology , Peptide Fragments/metabolism , Renal Dialysis
2.
Peptides ; 172: 171137, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38142816

ABSTRACT

Angiotensin AT2-receptor (AT2R) agonists have shown a wide range of protective effects in many preclinical disease models. However, the availability of AT2R-agonists is very limited due to the lack of high-throughput assays for AT2R-agonist identification. Therefore, we aimed to design and validate an assay for high-throughput screening of AT2R-agonist candidates. The assay is based on nitric oxide (NO) release measurements in primary human aortic endothelial cells (HAEC), in AT2R-transfected CHO cells (AT2R-CHO) or in non-transfected CHO cells (Flp-CHO) using the fluorescent probe DAF-FM diacetate. It is run in 96-well plates and fluorescence signals are semi-automatically quantified. The assay was tested for sensitivity (recognition of true positive results), selectivity (recognition of true negative results), and reliability (by calculating the repeatability coefficient (RC)). The high-throughput, semi-automated method was proven suitable, as the NO-releasing agents C21, CGP42112A, angiotensin-(1-7) and acetylcholine significantly increased NO release from HAEC. The assay is sensitive and selective, since the established AT2R-agonists C21, CGP42112A and angiotensin II significantly increased NO release from AT2R-CHO cells, while the non-AT2R-agonists angiotensin-(1-7) and acetylcholine had no effect. Assay reliability was shown by high-throughput screening of a library comprised of 40 potential AT2R-agonists, of which 39 met our requirements for reliability (RC ≤ 20% different from RC for C21). Our newly developed high-throughput method for detection of AT2R-agonistic activity was proven to be sensitive, selective, and reliable. This method is suitable for the screening of potential AT2R-agonists in future drug development programs.


Subject(s)
Acetylcholine , Imidazoles , Nitric Oxide , Sulfonamides , Thiophenes , Animals , Cricetinae , Humans , Cricetulus , Endothelial Cells , High-Throughput Screening Assays , Reproducibility of Results , Receptor, Angiotensin, Type 2 , Angiotensin II/pharmacology
3.
Biochem Pharmacol ; 216: 115793, 2023 10.
Article in English | MEDLINE | ID: mdl-37689272

ABSTRACT

With the discovery of the protective arm of the renin-angiotensin system (RAS), interest has grown in protective RAS-related receptors such as the angiotensin AT2-receptor [AT2R] as potential new drug targets. While it is known that AT2R couple to Gi, it is also apparent that they do not signal via inhibition of adenylyl cyclase/decrease in cAMP, as do many Gi-coupled receptors. Thus, standard commercially-available assays cannot be applied to test for agonistic or antagonistic properties of AT2R ligands. This lack of standard assays has hampered the development of new drugs targeting the AT2R. Therefore, we aimed at developing a reliable, technically easy assay for the determination of intrinsic activity of AT2R ligands, primarily for distinguishing between AT2R agonists and antagonists. We found that measurement of NO release by DAF-FM fluorescence in primary human aortic endothelial cells (HAEC) or in AT2R-transfected CHO cells is a reliable assay for the characterization of AT2R ligands. While testing the assay, we made several novel findings, including: a) C21 is a full agonist at the AT2R (with the same efficacy as angiotensin II); b) C21 has no intrinsic activity at the receptor Mas; c) AT2R-transfected HEK-293 cells are unresponsive to AT2R stimulation; d) EMA401 and PD123319, which are commonly regarded as AT2R antagonists, are partial agonists at the AT2R. Collectively, we have developed and tested an assay based on the measurement and quantification of NO release in HAEC or in AT2R-CHO cells that is suitable for the characterisation of novel and established AT2R ligands.


Subject(s)
Endothelial Cells , Receptor, Angiotensin, Type 2 , Animals , Cricetinae , Humans , Cricetulus , HEK293 Cells , Angiotensin II/pharmacology , Receptor, Angiotensin, Type 1
4.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37012386

ABSTRACT

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

5.
Hypertension ; 79(11): 2530-2541, 2022 11.
Article in English | MEDLINE | ID: mdl-36082664

ABSTRACT

BACKGROUND: Angiotensin AT2-receptor signaling is atypical for a G-protein coupled receptor and incompletely understood. To obtain novel insights into AT2-receptor signaling, we mapped changes in the phosphorylation status of the entire proteome of human aortic endothelial cells in response to AT2-receptor stimulation. METHODS: Phosphorylation status of human aortic endothelial cells after stimulation with C21 (1 µM; 0, 1, 3, 5, 20 minutes) was determined utilizing time-resolved quantitative phosphoproteomics. Specific changes in protein phosphorylation and acetylation were confirmed by Western Blotting. Functional tests included resazurin assay for cell proliferation, and caspase 3/7 luminescence assay or FACS analysis of annexin V expression for apoptosis. RESULTS: AT2-receptor stimulation significantly altered the phosphorylation status of 172 proteins (46% phosphorylations, 54% dephosphorylations). Bioinformatic analysis revealed a cluster of phospho-modified proteins involved in antiproliferation and apoptosis. Among these proteins, HDAC1 (histone-deacetylase-1) was dephosphorylated at serine421/423 involving serine/threonine phosphatases. Resulting HDAC1 inhibition led to p53 acetylation and activation. AT2-receptor stimulation induced antiproliferation and apoptosis, which were absent when cells were co-incubated with the p53 inhibitor pifithrin-α, thus indicating p53-dependence of these AT2-receptor mediated functions. CONCLUSIONS: Contrary to the prevailing view that AT2-receptor signaling largely involves phosphatases, our study revealed significant involvement of kinases. HDAC1 inhibition and resulting p53 activation were identified as novel, AT2-receptor coupled signaling mechanisms. Furthermore, the study created an openly available dataset of AT2-receptor induced phospho-modified proteins, which has the potential to be the basis for further discoveries of currently unknown, AT2-receptor coupled signaling mechanisms.


Subject(s)
Histones , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Receptor, Angiotensin, Type 2/metabolism , Endothelial Cells/metabolism , Apoptosis , Phosphoric Monoester Hydrolases/metabolism , Serine , Angiotensins/metabolism , Histone Deacetylase 1/metabolism
6.
Nutrients ; 14(13)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35807851

ABSTRACT

Dietary restriction (DR) reduces adiposity and improves metabolism in patients with one or more symptoms of metabolic syndrome. Nonetheless, it remains elusive whether the benefits of DR in humans are mediated by calorie or nutrient restriction. This study was conducted to determine whether isocaloric dietary protein restriction is sufficient to confer the beneficial effects of dietary restriction in patients with metabolic syndrome. We performed a prospective, randomized controlled dietary intervention under constant nutritional and medical supervision. Twenty-one individuals diagnosed with metabolic syndrome were randomly assigned for caloric restriction (CR; n = 11, diet of 5941 ± 686 KJ per day) or isocaloric dietary protein restriction (PR; n = 10, diet of 8409 ± 2360 KJ per day) and followed for 27 days. Like CR, PR promoted weight loss due to a reduction in adiposity, which was associated with reductions in blood glucose, lipid levels, and blood pressure. More strikingly, both CR and PR improved insulin sensitivity by 62.3% and 93.2%, respectively, after treatment. Fecal microbiome diversity was not affected by the interventions. Adipose tissue bulk RNA-Seq data revealed minor changes elicited by the interventions. After PR, terms related to leukocyte proliferation were enriched among the upregulated genes. Protein restriction is sufficient to confer almost the same clinical outcomes as calorie restriction without the need for a reduction in calorie intake. The isocaloric characteristic of the PR intervention makes this approach a more attractive and less drastic dietary strategy in clinical settings and has more significant potential to be used as adjuvant therapy for people with metabolic syndrome.


Subject(s)
Metabolic Syndrome , Caloric Restriction , Diet, Protein-Restricted , Dietary Proteins , Humans , Obesity , Prospective Studies
7.
Am J Physiol Heart Circ Physiol ; 316(1): H123-H133, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30339496

ABSTRACT

We have recently described a new peptide of the renin-angiotensin system, alamandine, a derivative of angiotensin-(1-7). Mas-related G protein-coupled receptor member D (MrgD) was identified as its receptor. Although similar cardioprotective effects of alamandine to those of angiotensin-(1-7) have been described, the significance of this peptide in heart function is still elusive. We aimed to evaluate the functional role of the alamandine receptor MrgD in the heart using MrgD-deficient mice. MrgD was localized in cardiomyocytes by immunofluorescence using confocal microscopy. High-resolution echocardiography was performed in wild-type and MrgD-deficient mice (2 and 12 wk old) under isoflurane anesthesia. Standard B-mode images were obtained in the right and left parasternal long and short axes for morphological and functional assessment and evaluation of cardiac deformation. Additional heart function evaluation was performed using Langendorff isolated heart preparations and inotropic measurements of isolated cardiomyocytes. Immunofluorescence indicated that the MrgD receptor is expressed in cardiomyocytes, mainly in the membrane and perinuclear and nuclear regions. Echocardiography showed left ventricular remodeling and severe dysfunction in MrgD-deficient mice. Strikingly, MrgD-deficient mice presented a pronounced dilated cardiomyopathy with a marked decrease in systolic function. Echocardiographic changes were supported by the data obtained in isolated hearts and inotropic measurements in cardiomyocytes. Our data add new evidence for a major role for alamandine/MrgD in the heart. Furthermore, our results indicate that we have identified a new gene implicated in dilated cardiomyopathy, unveiling a new target for translational approaches aimed to treat heart diseases. NEW & NOTEWORTHY The renin-angiotensin system is a key target for cardiovascular therapy. We have recently identified a new vasodepressor/cardioprotective angiotensin, alamandine. Here, we unmasked a key role for its receptor, Mas-related G protein-coupled receptor member D (MrgD), in heart function. The severe dilated cardiomyopathy observed in MrgD-deficient mice warrants clinical and preclinical studies to unveil its potential use in cardiovascular therapy.


Subject(s)
Cardiomyopathy, Dilated/genetics , Gene Deletion , Receptors, G-Protein-Coupled/genetics , Animals , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Myocardial Contraction , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Receptors, G-Protein-Coupled/metabolism , Ventricular Remodeling
8.
Clin Sci (Lond) ; 132(7): 777-790, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29540539

ABSTRACT

The Angiotensin II type 2 receptor (AT2R) promotes vasodilation by nitric oxide (NO) release from endothelial cells. However, the mechanisms underlying the AT2R-induced stimulation of endothelial NO synthase (eNOS) is still not completely understood. Therefore, we investigated whether in addition to the known AT2R-mediated phosphorylation of eNOS at Ser1177, activation of phosphatases and dephosphorylation of eNOS at Tyr657 and Thr495 are also involved. Human aortic endothelial cells (HAEC) were stimulated with the AT2R-agonist Compound 21 (C21) (1 µM) in the presence or absence of either PD123319 (10 µM; AT2R antagonist), l-NG-Nitroarginine methyl ester (l-NAME) (10 µM; eNOS inhibitor), MK-2206 (100 nM; protein kinase B (Akt) inhibitor) sodium fluoride (NaF) (1 nM; serine/threonine phosphatase inhibitor) or sodium orthovanadate (Na3VO4) (10 nM; tyrosine phosphatase inhibitor). NO release was estimated by quantifying 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) fluorescence. The phosphorylation status of activating (eNOS-Ser1177) or inhibitory eNOS residues (eNOS-Tyr657, eNOS-Thr495) was determined by Western blotting. Phosphorylation of Akt at Ser473 was measured to estimate Akt activity. AT2R stimulation significantly increased NO release from HAEC, which was blocked by PD123319, l-NAME and both phosphatase inhibitors. Intracellular calcium transients were not changed by C21. AT2R stimulation resulted in phosphorylation of eNOS-Ser1177 and dephosphorylation of eNOS-Tyr657 and eNOS-Thr495 Phosphorylation at eNOS-Ser1177 was prevented by inhibition of Akt with MK-2206. From these data, we conclude that AT2R stimulation in human endothelial cells increases eNOS activity through phosphorylation of activating eNOS residues (eNOS-Ser1177) by Akt, and through dephosphorylation of inactivating eNOS residues (eNOS-Tyr657, eNOS-Thr495) by serine/threonine and tyrosine phosphatases, thus increasing NO release.


Subject(s)
Nitric Oxide Synthase Type III/metabolism , Receptor, Angiotensin, Type 2/metabolism , Cells, Cultured , Enzyme Activation , Humans , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Receptor, Angiotensin, Type 2/agonists , Sulfonamides , Thiophenes
SELECTION OF CITATIONS
SEARCH DETAIL
...