Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 6(2): 365-383, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36753355

ABSTRACT

Over the last decades, photomedicine has made a significant impact and progress in treating superficial cancer. With tremendous efforts many of the technologies have entered clinical trials. Photothermal agents (PTAs) have been considered as emerging candidates for accelerating the outcome from photomedicine based cancer treatment. Besides various inorganic and organic candidates, 2D materials such as graphene, boron nitride, and molybdenum disulfide have shown significant potential for photothermal therapy (PTT). The properties such as high surface area to volume, biocompatibility, stability in physiological media, ease of synthesis and functionalization, and high photothermal conversion efficiency have made 2D nanomaterials wonderful candidates for PTT to treat cancer. The targeting or localized activation could be achieved when PTT is combined with chemotherapies, immunotherapies, or photodynamic therapy (PDT) to provide better outcomes with fewer side effects. Though significant development has been made in the field of phototherapeutic drugs, several challenges have restricted the use of PTT in clinical use and hence they have not yet been tested in large clinical trials. In this review, we attempted to discuss the progress, properties, applications, and challenges of 2D materials in the field of PTT and their application in photomedicine.


Subject(s)
Graphite , Nanostructures , Neoplasms , Photochemotherapy , Humans , Phototherapy , Nanostructures/therapeutic use , Neoplasms/drug therapy , Graphite/therapeutic use
2.
ACS Biomater Sci Eng ; 9(5): 2170-2180, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36149264

ABSTRACT

Obesity is a complex disorder associated with immense health consequences including high risk of cardiovascular diseases, diabetes, and cancer. Abnormality in the thyroid gland, genetics, less physical activity, uptake of excessive diet, and leptin resistance are critical factors in the development of obesity. To determine the treatment strategy, understanding the pathophysiology of obesity is crucial. For instances, leptin resistance mediated obesity defined by the presence of excessive leptin hormone (Lep) in the systemic circulation is very common in diet induced obesity. Therefore, our hypothesis is that quantitative measurement of Lep from blood can help to identify individuals with Lep resistant mediated obesity and thereby guide toward a proper treatment strategy. In this work, we aim to utilize an electrochemical immunosensing platform for diagnosis of obesity by measuring the Lep content in systemic circulation. A porous carbon confined FeNi bimetallic system was synthesized with three different ratios of Fe and Ni ions using high temperature pyrolysis technique. The suitability of the sensor for detecting Lep was studied using both CV and EIS techniques. The limit of detection (LOD) for GCE was recorded as 157.4 fg/mL with a wide linear concentration range of 500 fg/mL to 80 ng/mL, while for SPCE the LOD was 184.9 fg/mL with a linear range of 500 fg/mL to 50 ng/mL. Finally, the feasibility and applicability of the sensor for Lep detection was tested with serum collected from high fat diet induced obese rats. The selectivity, sensitivity, storage, and experimental stability and reproducibility tests showed potential for this biosensor platform as a point-of-care Lep detection device.


Subject(s)
Leptin , Obesity , Rats , Animals , Reproducibility of Results , Obesity/diagnosis , Obesity/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...