ABSTRACT
The exon junction complex (EJC) plays key roles throughout the lifespan of RNA and is particularly relevant in the nervous system. We investigated the roles of two EJC members, the paralogs MAGOH and MAGOHB, with respect to brain tumour development. High MAGOH/MAGOHB expression was observed in 14 tumour types; glioblastoma (GBM) showed the greatest difference compared to normal tissue. Increased MAGOH/MAGOHB expression was associated with poor prognosis in glioma patients, while knockdown of MAGOH/MAGOHB affected different cancer phenotypes. Reduced MAGOH/MAGOHB expression in GBM cells caused alterations in the splicing profile, including re-splicing and skipping of multiple exons. The binding profiles of EJC proteins indicated that exons affected by MAGOH/MAGOHB knockdown accumulated fewer complexes on average, providing a possible explanation for their sensitivity to MAGOH/MAGOHB knockdown. Transcripts (genes) showing alterations in the splicing profile are mainly implicated in cell division, cell cycle, splicing, and translation. We propose that high MAGOH/MAGOHB levels are required to safeguard the splicing of genes in high demand in scenarios requiring increased cell proliferation (brain development and GBM growth), ensuring efficient cell division, cell cycle regulation, and gene expression (splicing and translation). Since differentiated neuronal cells do not require increased MAGOH/MAGOHB expression, targeting these paralogs is a potential option for treating GBM.
Subject(s)
Genes, cdc , Glioblastoma , Humans , RNA Splicing , Cell Division , Cell Nucleus/metabolism , Glioblastoma/metabolism , Nuclear Proteins/metabolismABSTRACT
Post-transcriptional regulation of gene expression is fundamental for all forms of life, as it critically contributes to the composition and quantity of a cell's proteome. These processes encompass splicing, polyadenylation, mRNA decay, mRNA editing and modification and translation and are modulated by a variety of RNA-binding proteins (RBPs). Alterations affecting RBP expression and activity contribute to the development of different types of cancer. In this chapter, we discuss current research shedding light on the role of different RBPs in gliomas. These studies place RBPs as modulators of critical signaling pathways, establish their relevance as prognostic markers and open doors for new therapeutic strategies.
Subject(s)
Glioma , RNA-Binding Proteins , Glioma/physiopathology , Humans , Polyadenylation , RNA Splicing , RNA Stability , RNA-Binding Proteins/metabolismABSTRACT
Preclinical in vitro models provide an essential tool to study cancer cell biology as well as aid in translational research, including drug target identification and drug discovery efforts. For any model to be clinically relevant, it needs to recapitulate the biology and cell heterogeneity of the primary tumor. We recently developed and described a conditional reprogramming (CR) cell technology that addresses many of these needs and avoids the deficiencies of most current cancer cell lines, which are usually clonal in origin. Here, we used the CR cell method to generate a collection of patient-derived cell cultures from non-small cell lung cancers (NSCLC). Whole exome sequencing and copy number variations are used for the first time to address the capability of CR cells to keep their tumor-derived heterogeneity. Our results indicated that these primary cultures largely maintained the molecular characteristics of the original tumors. Using a mutant-allele tumor heterogeneity (MATH) score, we showed that CR cells are able to keep and maintain most of the intra-tumoral heterogeneity, suggesting oligoclonality of these cultures. CR cultures therefore represent a pre-clinical lung cancer model for future basic and translational studies.
Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cellular Reprogramming Techniques/methods , Genetic Heterogeneity , Gene Dosage , Humans , Models, Biological , Tumor Cells, Cultured , Whole Genome SequencingABSTRACT
BACKGROUND: Glioblastoma (GBM) is the most common and aggressive type of brain tumor. Currently, GBM has an extremely poor outcome and there is no effective treatment. In this context, genomic and transcriptomic analyses have become important tools to identify new avenues for therapies. RNA-binding proteins (RBPs) are master regulators of co- and post-transcriptional events; however, their role in GBM remains poorly understood. To further our knowledge of novel regulatory pathways that could contribute to gliomagenesis, we have conducted a systematic study of RBPs in GBM. RESULTS: By measuring expression levels of 1542 human RBPs in GBM samples and glioma stem cell samples, we identified 58 consistently upregulated RBPs. Survival analysis revealed that increased expression of 21 RBPs was also associated with a poor prognosis. To assess the functional impact of those RBPs, we modulated their expression in GBM cell lines and performed viability, proliferation, and apoptosis assays. Combined results revealed a prominent oncogenic candidate, SNRPB, which encodes core spliceosome machinery components. To reveal the impact of SNRPB on splicing and gene expression, we performed its knockdown in a GBM cell line followed by RNA sequencing. We found that the affected genes were involved in RNA processing, DNA repair, and chromatin remodeling. Additionally, genes and pathways already associated with gliomagenesis, as well as a set of general cancer genes, also presented with splicing and expression alterations. CONCLUSIONS: Our study provides new insights into how RBPs, and specifically SNRPB, regulate gene expression and directly impact GBM development.
Subject(s)
Brain Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Genomics , Glioblastoma/genetics , RNA Splicing/genetics , RNA-Binding Proteins/genetics , snRNP Core Proteins/genetics , Apoptosis/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Brain Neoplasms/pathology , Cell Proliferation , Cell Survival/genetics , Cluster Analysis , Computational Biology/methods , Exons , Gene Expression Profiling , Gene Knockdown Techniques , Genomics/methods , Glioblastoma/metabolism , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Introns , Molecular Sequence Annotation , Neoplasm Grading , Prognosis , RNA-Binding Proteins/metabolism , Signal Transduction , Transcriptome , snRNP Core Proteins/metabolismABSTRACT
RNA binding proteins (RBPs) are involved in several post-transcriptional stages of gene expression and dictate the quality and quantity of the cellular proteome. When aberrantly expressed, they can lead to disease states as well as cancers. A basic requirement to understand their role in normal tissue development and cancer is the build of comprehensive gene expression maps. In this direction, we generated a list with 383 human RBPs based on the NCBI and EMSEMBL databases. SAGE and MPSS were then used to verify their levels of expression in normal tissues while SAGE and microarray datasets were used to perform comparisons between normal and tumor tissues. As main outcomes of our studies, we identified clusters of co-expressed or co-regulated genes that could act together in the development and maintenance of specific tissues; we also obtained a high confidence list of RBPs aberrantly expressed in several tumor types. This later list contains potential candidates to be explored as diagnostic and prognostic markers as well as putative targets for cancer therapy approaches.