Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitology ; : 1-7, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494476

ABSTRACT

Medically important ixodid ticks often carry multiple pathogens, with individual ticks frequently coinfected and capable of transmitting multiple infections to hosts, including humans. Acquisition of multiple zoonotic pathogens by immature blacklegged ticks (Ixodes scapularis) is facilitated when they feed on small mammals, which are the most competent reservoir hosts for Anaplasma phagocytophilum (which causes anaplasmosis in humans), Babesia microti (babesiosis) and Borrelia burgdorferi (Lyme disease). Here, we used data from a large-scale, long-term experiment to ask whether patterns of single and multiple infections in questing nymphal I. scapularis ticks from residential neighbourhoods differed from those predicted by independent assortment of pathogens, and whether patterns of coinfection were affected by residential application of commercial acaricidal products. Quantitative polymerase chain reaction was used for pathogen detection in multiplex reactions. In control neighbourhoods and those treated with a fungus-based biopesticide deployed against host-seeking ticks (Met52), ticks having only single infections of either B. microti or B. burgdorferi were significantly less common than expected, whereas coinfections with these 2 pathogens were significantly more common. However, use of tick control system bait boxes, which kill ticks attempting to feed on small mammals, eliminated the bias towards coinfection. Although aimed at reducing the abundance of host-seeking ticks, control methods directed at ticks attached to small mammals may influence human exposure to coinfected ticks and the probability of exposure to multiple tick-borne infections.

2.
PLoS One ; 18(11): e0293820, 2023.
Article in English | MEDLINE | ID: mdl-37943804

ABSTRACT

Although human exposure to the ticks that transmit Lyme-disease bacteria is widely considered to occur around people's homes, most studies of variation in tick abundance and infection are undertaken outside residential areas. Consequently, the patterns of variation in risk of human exposure to tick-borne infections in these human-dominated landscapes are poorly understood. Here, we report the results of four years of sampling for tick abundance, tick infection, tick encounters, and tick-borne disease reports on residential properties nested within six neighborhoods in Dutchess County, New York, USA, an area of high incidence for Lyme and other tick-borne diseases. All properties were within neighborhoods that had been randomly assigned as placebo controls in The Tick Project; hence, none were treated to reduce tick abundance during the period of investigation, providing a unique dataset of natural variation within and between neighborhoods. We estimated the abundance of host-seeking blacklegged ticks (Ixodes scapularis) in three types of habitats on residential properties-forests, lawns, and gardens. In forest and lawn habitats, some neighborhoods had consistently higher tick abundance. Properties within neighborhoods also varied consistently between years, suggesting hot spots and cold spots occurring at a small (~ 1-hectare) spatial scale. Across neighborhoods, the abundance of nymphal ticks was explained by neither the amount of forest in that neighborhood, nor by the degree of forest fragmentation. The proportion of ticks infected with three common tick-borne pathogens did not differ significantly between neighborhoods. We observed no effect of tick abundance on human encounters with ticks, nor on either human or pet cases of tick-borne diseases. However, the number of encounters between ticks and outdoor pets in a neighborhood was negatively correlated with the abundance of questing ticks in that neighborhood. Our results reinforce the need to understand how human behavior and neglected ecological factors affect variation in human encounters with ticks and cases of tick-borne disease in residential settings.


Subject(s)
Ixodes , Lyme Disease , Tick-Borne Diseases , Animals , Humans , New York/epidemiology , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Lyme Disease/epidemiology , Ixodes/microbiology , Ecosystem
3.
Pathogens ; 12(2)2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36839444

ABSTRACT

Acaricides are hypothesized to reduce human risk of exposure to tick-borne pathogens by decreasing the abundance and/or infection prevalence of the ticks that serve as vectors for the pathogens. Acaricides targeted at reservoir hosts such as small mammals are expected to reduce infection prevalence in ticks by preventing their acquisition of zoonotic pathogens. By reducing tick abundance, reservoir-targeted or broadcast acaricides could reduce tick infection prevalence by interrupting transmission cycles between ticks and their hosts. Using an acaricide targeted at small-mammal hosts (TCS bait boxes) and one sprayed on low vegetation (Met52 fungal biocide), we tested the hypotheses that infection prevalence of blacklegged ticks with zoonotic pathogens would be more strongly diminished by TCS bait boxes, and that any effects of both acaricidal treatments would increase during the four years of deployment. We used a masked, placebo-controlled design in 24 residential neighborhoods in Dutchess County, New York. Analyzing prevalence of infection with Borrelia burgdorferi, Anaplasma phagocytophilum, and Babesia microti in 5380 nymphal Ixodes scapularis ticks, we found little support for either hypothesis. TCS bait boxes did not reduce infection prevalence with any of the three pathogens compared to placebo controls. Met52 was associated with lower infection prevalence with B. burgdorferi compared to placebo controls but had no effect on prevalence of infection with the other two pathogens. Although significant effects of year on infection prevalence of all three pathogens were detected, hypothesized cumulative reductions in prevalence were observed only for B. burgdorferi. We conclude that reservoir-targeted and broadcast acaricides might not generally disrupt pathogen transmission between reservoir hosts and tick vectors or reduce human risk of exposure to tick-borne pathogens.

4.
Vector Borne Zoonotic Dis ; 23(3): 89-105, 2023 03.
Article in English | MEDLINE | ID: mdl-36848248

ABSTRACT

Background: Controlling populations of ticks with biological or chemical acaricides is often advocated as a means of reducing human exposure to tick-borne diseases. Reducing tick abundance is expected to decrease immediate risk of tick encounters and disrupt pathogen transmission cycles, potentially reducing future exposure risk. Materials and Methods: We designed a placebo-controlled, randomized multiyear study to assess whether two methods of controlling ticks-tick control system (TCS) bait boxes and Met52 spray-reduced tick abundance, tick encounters with people and outdoor pets, and reported cases of tick-borne diseases. The study was conducted in 24 residential neighborhoods in a Lyme disease endemic zone in New York State. We tested the hypotheses that TCS bait boxes and Met52, alone or together, would be associated with increasing reductions in tick abundance, tick encounters, and cases of tick-borne disease over the 4-5 years of the study. Results: In neighborhoods with active TCS bait boxes, populations of blacklegged ticks (Ixodes scapularis) were not reduced over time in any of the three habitat types tested (forest, lawn, shrub/garden). There was no significant effect of Met52 on tick abundance overall, and there was no evidence for a compounding effect over time. Similarly, we observed no significant effect of either of the two tick control methods, used singly or together, on tick encounters or on reported cases of tick-borne diseases in humans overall, and there was no compounding effect over time. Thus, our hypothesis that effects of interventions would accumulate through time was not supported. Conclusions: The apparent inability of the selected tick control methods to reduce risk and incidence of tick-borne diseases after years of use requires further consideration.


Subject(s)
Ixodes , Lyme Disease , Tick-Borne Diseases , Animals , Ecosystem , Incidence , Lyme Disease/epidemiology , Lyme Disease/prevention & control , Lyme Disease/veterinary , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/veterinary
5.
Emerg Infect Dis ; 28(5): 957-966, 2022 05.
Article in English | MEDLINE | ID: mdl-35447066

ABSTRACT

Tickborne diseases (TBDs) such as Lyme disease result in ≈500,000 diagnoses annually in the United States. Various methods can reduce the abundance of ticks at small spatial scales, but whether these methods lower incidence of TBDs is poorly understood. We conducted a randomized, replicated, fully crossed, placebo-controlled, masked experiment to test whether 2 environmentally safe interventions, the Tick Control System (TCS) and Met52 fungal spray, used separately or together, affected risk for and incidence of TBDs in humans and pets in 24 residential neighborhoods. All participating properties in a neighborhood received the same treatment. TCS was associated with fewer questing ticks and fewer ticks feeding on rodents. The interventions did not result in a significant difference in incidence of human TBDs but did significantly reduce incidence in pets. Our study is consistent with previous evidence suggesting that reducing tick abundance in residential areas might not reduce incidence of TBDs in humans.


Subject(s)
Ixodes , Lyme Disease , Tick-Borne Diseases , Ticks , Animals , Humans , Incidence , Ixodes/microbiology , Lyme Disease/epidemiology , Lyme Disease/prevention & control , New York/epidemiology , Tick Control , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/prevention & control , United States/epidemiology
6.
Zoonoses Public Health ; 67(6): 637-650, 2020 09.
Article in English | MEDLINE | ID: mdl-32638553

ABSTRACT

Established populations of Asian longhorned ticks (ALT), Haemaphysalis longicornis, were first identified in the United States (US) in 2017 by sequencing the mitochondrial cytochrome c oxidase subunit I (cox1) 'barcoding' locus followed by morphological confirmation. Subsequent investigations detected ALT infestations in 12, mostly eastern, US states. To gain information on the origin and spread of US ALT, we (1) sequenced cox1 from ALT populations across 9 US states and (2) obtained cox1 sequences from potential source populations [China, Japan and Republic of Korea (ROK) as well as Australia, New Zealand and the Kingdom of Tonga (KOT)] both by sequencing and by downloading publicly available sequences in NCBI GenBank. Additionally, we conducted epidemiological investigations of properties near its initial detection locale in Hunterdon County, NJ, as well as a broader risk analysis for importation of ectoparasites into the area. In eastern Asian populations (China/Japan/ROK), we detected 35 cox1 haplotypes that neatly clustered into two clades with known bisexual versus parthenogenetic phenotypes. In Australia/New Zealand/KOT, we detected 10 cox1 haplotypes all falling within the parthenogenetic cluster. In the United States, we detected three differentially distributed cox1 haplotypes from the parthenogenetic cluster, supporting phenotypic evidence that US ALT are parthenogenetic. While none of the source populations examined had all three US cox1 haplotypes, a phylogeographic network analysis supports a northeast Asian source for the US populations. Within the United States, epidemiological investigations indicate ALT can be moved long distances by human transport of animals, such as horses and dogs, with smaller scale movements on wildlife. These results have relevant implications for efforts aimed at minimizing the spread of ALT in the United States and preventing additional exotic tick introductions.


Subject(s)
Animal Distribution , Ixodidae/physiology , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Gene Expression Regulation, Enzymologic , United States
7.
J Med Entomol ; 56(5): 1420-1427, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31120510

ABSTRACT

Public health authorities recommend a range of nonchemical measures to control blacklegged ticks Ixodes scapularis Say, 1821 (Ixodida: Ixodidae) in residential yards. Here we enumerate these recommendations and assess their relationship to larval tick abundance in 143 yards in Dutchess County, New York, an area with high Lyme disease incidence. We examined the relationship between larval tick abundance and eight property features related to recommendations from public health agencies: presence or absence of outdoor cats, wood piles, trash, stone walls, wood chip barriers separating lawn from adjacent forest, bird feeders, fencing, and prevalence of Japanese barberry (Berberis thunbergii DC [Ranunculales: Berberidaceae]). We assessed abundance of larval ticks using two methods, flagging for questing ticks and visual examination of ticks on white-footed mice Peromyscus leucopus Rafinesque, 1818 (Rodentia: Cricetidae). More questing larvae were found in yards where trash or stone walls were present. These effects were less pronounced as forest area increased within the yard. Counts of larvae per mouse were lower in properties with >75% of the yard fenced than in properties with less fencing. We find partial support for recommendations regarding trash, stone walls, and fencing. We did not detect effects of outdoor cats, bird feeders, barriers, wood piles, or Japanese barberry. There was low statistical power to detect effects of ground barriers (gravel, mulch, or woodchip), which were present in only two properties.


Subject(s)
Environment , Ixodes/physiology , Peromyscus/parasitology , Tick Control/methods , Animals , Built Environment , Ixodes/growth & development , Larva/growth & development , Larva/physiology , New York , Population Density
8.
Zhongguo Fei Ai Za Zhi ; 21(11): 828-832, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30454544

ABSTRACT

BACKGROUND: Lung nodules are frequently identified on imaging studies and can represent early lung cancers. We instituted the Lung Nodule Evaluation Team (LNET) to optimize management of these nodules by a lung specialist physician. All lung nodules identified by a radiologist prompted a direct consultation to this service. We report our initial experience with this process. METHODS: This is a retrospective review of patients with lung nodules at a single institution from 2008 to 2015. Since October 2014, lung nodules >3 mm identified on computed tomography (CT) scanning of the chest generate an automatic consult to LNET from the radiology service. Demographic, nodule and follow up data was entered into a surveillance database and summarized. RESULTS: There were 1,873 patients identified in the database. Of these, 900 patients were undergoing active surveillance. Consults increased from 5.5 to 93 per month after the start of the new consult program. Lung nodules were identified on 64% of chest CT scans. Prior to the direct radiology consult the average size of a nodule was 1.7 cm and 0.7 cm after. The overall time from initial nodule imaging to initiating a management plan by a thoracic specialist physician was 3.7 days. CONCLUSIONS: Assessment of lung nodules by a specialist physician is important to ensure appropriate long term management and optimize utilization of diagnostic interventions. A direct radiology consult to a specialized team of chest physicians decreased the time in initiating a management plan, identified smaller nodules and may lead to a more judicious use of health care resources in the management of lung nodules.


Subject(s)
Hospitals, Veterans , Lung Neoplasms/diagnostic imaging , Humans , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Quality Assurance, Health Care , Tomography, X-Ray Computed , Tumor Burden
9.
J Biomol Screen ; 12(5): 628-34, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17478478

ABSTRACT

A high-throughput mass spectrometry assay to measure the catalytic activity of phosphatidylserine decarboxylase (PISD) is described. PISD converts phosphatidylserine to phosphatidylethanolamine during lipid synthesis. Traditional methods of measuring PISD activity are low throughput and unsuitable for the high-throughput screening of large compound libraries. The high-throughput mass spectrometry assay directly measures phosphatidylserine and phosphatidylethanolamine using the RapidFiretrade mark platform at a rate of 1 sample every 7.5 s. The assay is robust, with an average Z' value of 0.79 from a screen of 9920 compounds. Of 60 compounds selected for confirmation, 54 are active in dose-response studies. The application of high-throughput mass spectrometry permitted a high-quality screen to be performed for an otherwise intractable target.


Subject(s)
Carboxy-Lyases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mass Spectrometry/methods , Carboxy-Lyases/analysis , Carboxy-Lyases/genetics , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Stability , Freezing , Humans , Kidney/cytology , Kinetics , Plasmids , Recombinant Fusion Proteins/antagonists & inhibitors , Robotics , Sequence Analysis, DNA , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...