Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
J Org Chem ; 89(12): 9098-9102, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861461

ABSTRACT

We report the first total synthesis of scleropentaside D, a unique C-glycosidic ellagitannin, from the ketal derivative of scleropentaside A employing site-selective O4-protection of C-acyl glycoside and copper-catalyzed oxidative coupling reaction of galloyl groups as the key steps. Our study confirms the proposed structure of this natural product, scleropentaside D, and demonstrates its effectiveness as an inhibitor of α-glycosidase.


Subject(s)
Hydrolyzable Tannins , Hydrolyzable Tannins/chemistry , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/chemical synthesis , Molecular Structure , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Catalysis
4.
Ecotoxicol Environ Saf ; 268: 115685, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976930

ABSTRACT

Triphenyl phosphate (TPHP), one widely used organophosphate flame retardant, has attracted accumulating attention due to its high detection rate in human biological samples. Up to date, the effects of TPHP exposure on intestinal health remain unexplored. In this study, BALB/c mice were used as a model and exposed to TPHP at dose of 2, 10, or 50 mg/kg body weight for 28 days. We observed Crohn's disease-like features in ileum and ulcerative colitis disease-like features in colon, such as shorter colon length, ileum/colon structure impairment, intestinal epithelial cell apoptosis, enrichment of proinflammatory cytokines and immune cells, and disruption of tight junction. Furthermore, we found that TPHP induced production of reactive oxygen species and apoptosis in intestinal epithelial Caco-2 cells, accompanied by disruption of tight junction between cells. To understand the molecular mechanism underlying TPHP-induced changes in intestines, we build the adverse outcome pathway (AOP) framework based on Comparative Toxicogenomics and GeneCards database. The AOP framework revealed that PI3K/AKT and FoxO signaling pathway might be associated with cellular apoptosis, an increase in ROS production, and increased inflammation response in mouse ileum and colon tissues challenged with TPHP. These results identified that TPHP induced IBD-like features and provided new perspectives for toxicity evaluation of TPHP.


Subject(s)
Flame Retardants , Humans , Animals , Mice , Flame Retardants/toxicity , Flame Retardants/metabolism , Caco-2 Cells , Phosphatidylinositol 3-Kinases , Organophosphates/toxicity , Organophosphates/metabolism , Intestines
5.
Inflamm Bowel Dis ; 29(12): 1929-1940, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37335900

ABSTRACT

BACKGROUND: Honokiol (HKL), a natural extract of the bark of the magnolia tree and an activator of the mitochondrial protein sirtuin-3 (SIRT3), has been proposed to possess anti-inflammatory effects. This study investigated the inhibitory effects of HKL on T helper (Th) 17 cell differentiation in colitis. METHODS: Serum and biopsies from 20 participants with ulcerative colitis (UC) and 18 healthy volunteers were collected for the test of serum cytokines, flow cytometry analysis (FACS), and relative messenger RNA (mRNA) levels of T cell subsets, as well as the expression of SIRT3 and phosphorylated signal transducer and activator of transcription/retinoic acid-related orphan nuclear receptor γt (p-STAT3/RORγt) signal pathway in colon tissues. In vitro, naïve clusters of differentiation (CD) 4 + T cells isolated from the mouse spleen differentiated to subsets including Th1, Th2, Th17, and regulatory T (Treg) cells. Peripheral blood monocytes (PBMCs) from healthy volunteers were induced to the polarization of Th17 cells. After HKL treatment, changes in T cell subsets, related cytokines, and transcription factors were measured. The dextran sulfate sodium (DSS)-induced colitis and interleukin (IL)-10-deficient mice were intraperitoneally injected with HKL. These experiments were conducted to study the effect of HKL on the development, cytokines, and expression of signaling pathway proteins in colitis. RESULTS: Patients with UC had higher serum IL-17 and a higher proportion of Th17 differentiation in blood compared with healthy participants; while IL-10 level and the proportion of Treg cells were lower. Higher relative mRNA levels of RORγt and a lower SIRT3 expression in colon tissues were observed. In vitro, HKL had little effect on the differentiation of naïve CD4+ T cells to Th1, Th2, or Treg cells, but it downregulated IL-17 levels and the Th17 cell ratio in CD4+ T cells from the mouse spleen and human PBMCs under Th17 polarization. Even with a STAT3 activator, HKL still significantly inhibited IL-17 levels. In DSS-induced colitis mice and IL-10 deficient mice treated with HKL, the length of the colon, weight loss, disease activity index, and histopathological scores were improved, IL-17 and IL-21 levels, and the proportion of Th17 cells were decreased. Sirtuin-3 expression was increased, whereas STAT3 phosphorylation and RORγt expression were inhibited in the colon tissue of mice after HKL treatment. CONCLUSIONS: Our study demonstrated that HKL could partially protect against colitis by regulating Th17 differentiation through activating SIRT3, leading to inhibition of the STAT3/RORγt signaling pathway. These results provide new insights into the protective effects of HKL against colitis and may facilitate the research of new drugs for inflammatory bowel disease.


Subject(s)
Colitis, Ulcerative , Colitis , Sirtuin 3 , Humans , Animals , Mice , Interleukin-17/metabolism , Interleukin-10/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Th17 Cells , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , Sirtuin 3/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Colitis, Ulcerative/pathology , T-Lymphocytes, Regulatory/metabolism , Cytokines/metabolism , Cell Differentiation , RNA, Messenger/metabolism , Dextran Sulfate/adverse effects
6.
Environ Int ; 176: 107968, 2023 06.
Article in English | MEDLINE | ID: mdl-37201399

ABSTRACT

Nanoplastics (NPs), regarded as the emerging contaminants, can enter and be mostly accumulated in the digest tract, which pose the potential threat to intestinal health. In this study, mice were orally exposed to polystyrene (PS), PS-COOH and PS-NH2 NPs with the size of ∼100 nm at a human equivalent dose for 28 consecutive days. All three kinds of PS-NPs triggered Crohn's ileitis-like features, such as ileum structure impairment, increased proinflammatory cytokines and intestinal epithelial cell (IEC) necroptosis, and PS-COOH/PS-NH2 NPs exhibited higher adverse effects on ileum tissues. Furthermore, we found PS-NPs induced necroptosis rather than apoptosis via activating RIPK3/MLKL pathway in IECs. Mechanistically, we found that PS-NPs accumulated in the mitochondria and subsequently caused mitochondrial stress, which initiated PINK1/Parkin-mediated mitophagy. However, mitophagic flux was blocked due to lysosomal deacidification caused by PS-NPs, and thus led to IEC necroptosis. We further found that mitophagic flux recovery by rapamycin can alleviate NP-induced IEC necroptosis. Our findings revealed the underlying mechanisms concerning NP-triggered Crohn's ileitis-like features and might provide new insights for the further safety assessment of NPs.


Subject(s)
Crohn Disease , Ileitis , Nanoparticles , Water Pollutants, Chemical , Animals , Mice , Humans , Polystyrenes/toxicity , Polystyrenes/chemistry , Microplastics , Necroptosis , Crohn Disease/metabolism , Epithelial Cells , Ileitis/metabolism , Nanoparticles/toxicity
7.
Front Neurosci ; 17: 1145805, 2023.
Article in English | MEDLINE | ID: mdl-37065920

ABSTRACT

Background: Temporal lobe epilepsy (TLE) is a common chronic episodic illness of the nervous system. However, the precise mechanisms of dysfunction and diagnostic biomarkers in the acute phase of TLE are uncertain and hard to diagnose. Thus, we intended to qualify potential biomarkers in the acute phase of TLE for clinical diagnostics and therapeutic purposes. Methods: An intra-hippocampal injection of kainic acid was used to induce an epileptic model in mice. First, with a TMT/iTRAQ quantitative labeling proteomics approach, we screened for differentially expressed proteins (DEPs) in the acute phase of TLE. Then, differentially expressed genes (DEGs) in the acute phase of TLE were identified by linear modeling on microarray data (limma) and weighted gene co-expression network analysis (WGCNA) using the publicly available microarray dataset GSE88992. Co-expressed genes (proteins) in the acute phase of TLE were identified by overlap analysis of DEPs and DEGs. The least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination (SVM-RFE) algorithms were used to screen Hub genes in the acute phase of TLE, and logistic regression algorithms were applied to develop a novel diagnostic model for the acute phase of TLE, and the sensitivity of the diagnostic model was validated using receiver operating characteristic (ROC) curves. Results: We screened a total of 10 co-expressed genes (proteins) from TLE-associated DEGs and DEPs utilizing proteomic and transcriptome analysis. LASSO and SVM-RFE algorithms for machine learning were applied to identify three Hub genes: Ctla2a, Hapln2, and Pecam1. A logistic regression algorithm was applied to establish and validate a novel diagnostic model for the acute phase of TLE based on three Hub genes in the publicly accessible datasets GSE88992, GSE49030, and GSE79129. Conclusion: Our study establishes a reliable model for screening and diagnosing the acute phase of TLE that provides a theoretical basis for adding diagnostic biomarkers for TLE acute phase genes.

8.
Microorganisms ; 11(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37110425

ABSTRACT

Chlorella vulgaris is one of the most commonly used microalgae in aquaculture feeds. It contains high concentrations of various kinds of nutritional elements that are involved in the physiological regulation of aquaculture animals. However, few studies have been conducted to illustrate their influence on the gut microbiota in fish. In this work, the gut microbiota of Nile tilapia (Oreochromis niloticus) (average weight is 6.64 g) was analyzed by high-throughput sequencing of the 16S rRNA gene after feeding with 0.5% and 2% C. vulgaris additives in diets for 15 and 30 days (average water temperature was 26 °C). We found that the impact of C. vulgaris on the gut microbiota of Nile tilapia was feeding-time dependent. Only by feeding for 30 days (not 15 days) did the addition of 2% C. vulgaris to diets significantly elevate the alpha diversity (Chao1, Faith pd, Shannon, Simpson, and the number of observed species) of the gut microbiota. Similarly, C. vulgaris exerted a significant effect on the beta diversity (Bray-Curtis similarity) of the gut microbiota after feeding for 30 days (not 15 days). During the 15-day feeding trial, LEfSe analysis showed that Paracoccus, Thiobacillus, Dechloromonas, and Desulfococcus were enriched under 2% C. vulgaris treatment. During the 30-day feeding trial, Afipia, Ochrobactrum, Polymorphum, Albidovulum, Pseudacidovorax, and Thiolamprovum were more abundant in 2% C. vulgaris-treated fish. C. vulgaris promoted the interaction of gut microbiota in juvenile Nile tilapia by increasing the abundance of Reyranella. Moreover, during the feeding time of 15 days, the gut microbes interacted more closely than those during the feeding time of 30 days. This work will be valuable for understanding how C. vulgaris in diets impacts the gut microbiota in fish.

9.
Virus Res ; 330: 199108, 2023 06.
Article in English | MEDLINE | ID: mdl-37024058

ABSTRACT

Enterovirus 71 (EV71) infection mainly causes hand, foot, and mouth disease (HFMD) and remains a serious public health problem to the children under the age of 5. Until now, there is no specific drug to treat HFMD in clinical and there is an urgent to explore the new target and the new drug to address clinical challenges. At present, we found histone deacetylase 11 (HDAC11) involves in supporting EV71 replication. We also used HDAC11 siRNA and an HDAC11 inhibitor FT895 to downregulate HDAC11 expression and found that targeting HDAC11 could significantly restrict EV71 replication in vitro and in vivo. Our results revealed the new role of HDAC11 participating in EV71 replication and broadened our knowledge regarding the functions of HDAC11 and the roles of HDACs in the epigenetic regulation of viral infectious diseases. Our results for the first time identified FT895 as an effective inhibitor of EV71 in vitro and in vivo, which may contribute to be a potential drug to treat HFMD.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Child , Humans , Enterovirus A, Human/genetics , Epigenesis, Genetic , Histone Deacetylases/genetics , Histone Deacetylases/pharmacology
10.
Front Nutr ; 10: 1126359, 2023.
Article in English | MEDLINE | ID: mdl-36908916

ABSTRACT

Radix Paeonia Alba (RPA) is often used as food and medicine. This study aimed to enrich and identify the antioxidant and hypoglycemic bioactive compounds from RPA. The results indicated that the ethyl acetate fraction (EAF) showed the highest total phenolic content, DPPH, ABTS+ scavenging ability, and α-glucosidase inhibition ability (IC50 = 7.27 µg/ml). The EAF could alleviate H2O2-induced oxidative stress in HepG2 cells by decreasing the MDA and ROS levels, improving cell apoptosis, increasing the enzyme activity of GPX-Px, CAT, SOD, Na+/K+-ATP, and Ca2+/Mg2+-ATP, and stimulating T-AOC expression, which also enhanced the glucose uptake of insulin-resistant HepG2 cells. In addition, the EAF significantly reduced the fasting blood glucose level and improved glucose tolerance in diabetic mice. An HPLC-QTOF-MS/MS analysis displayed that procyanidin, digallic acid isomer, methyl gallate, tetragalloylglucose isomer, dimethyl gallic acid, and paeoniflorin were the major compounds in the EAF. These findings are meaningful for the application of the EAF in the medicinal or food industry to prevent and treat oxidative stress and diabetes mellitus.

11.
Biosens Bioelectron ; 221: 114424, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-35691789

ABSTRACT

Vascular endothelial growth factor (VEGF) plays an important role in atherosclerosis, and the detection of VEGF is critical for the prevention, monitoring, and diagnosis of cardiovascular diseases. Here, a novel "signal on-off-super on" sandwich-type aptamer sensor with a triple signal amplification strategy was developed for the first time. Based on the capture aptamer was labeled with methylene blue (MB) on the internal bases, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-coupled voltage enrichment was used to amplify the electrochemical signal. To improve the analytical performance of the aptamer sensor, gold nanoparticles@Ti3C2Tx-Mxene (AuNPs@Ti3C2Tx-Mxene) were synthesized through the electrodeposition of AuNPs on the Ti3C2Tx-Mxene surface, providing active sites for the immobilization of the aptamer and amplifying the electrochemical signals. The excellent trans-cleavage activity of the CRISPR-Cas12a system was harnessed to cleave signal probes. The cleaved signal probes were enriched using an electrochemical signal instead of complicated target amplification steps before detection. Hence, we report a simplified detection process for amplifying electrochemical signals. Under optimal conditions, the aptamer sensor exhibited high sensitivity, acceptable stability, and reproducibility with a wide linear range from 1 pM to 10 µM (R2 = 0.9917) and an ultralow detection limit of 0.33 pM (S/N = 3). Therefore, we propose a novel strategy of CRISPR-Cas12a-based protein detection that opens a new window for the diagnostic applications of various biomarkers.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Gold/chemistry , Aptamers, Nucleotide/chemistry , Vascular Endothelial Growth Factor A/genetics , Metal Nanoparticles/chemistry , Limit of Detection , CRISPR-Cas Systems/genetics , Reproducibility of Results
15.
Dig Liver Dis ; 55(5): 679-684, 2023 05.
Article in English | MEDLINE | ID: mdl-36411191

ABSTRACT

BACKGROUND: Data on the frequency of colorectal neoplasia in sporadic ampullary tumors remains scarce. METHODS: We retrospectively reviewed 135 patients undergoing endoscopic ampullectomy from January 2018 to July 2021, and identified 95 patients with sporadic ampullary adenoma who underwent total colonoscopy. Colonoscopy findings were compared with 380 asymptomatic controls using the chi-squared test. Whole-exome sequencing (WES) was performed on one patient with synchronous adenomas of the ampulla of Vater and ascending colon. RESULTS: Colorectal polyps were present in 60% of Cases vs. 34.7% of Controls (P = 0.001), advanced adenoma in 20% vs. 5.5%, and adenocarcinoma in 4.2% vs. 0.8%. Cases tended to have larger polyps than Controls (P<0.001), while there was no difference in polyp location and histology between the two groups. The odds ratio of all the colorectal lesions, advanced colorectal adenoma and adenocarcinoma in Cases was 1.7, 4.2, and 4, respectively. WES in one patient revealed that both of ampullary adenoma and colonic adenoma shared somatic ABCB1 mutation. CONCLUSIONS: The frequency of colorectal polyps or neoplasia was significantly higher in Cases than Controls. We proposed that ampullary neoplasia is analogous to colon lesions and warrants total colonoscopy screening in patients diagnosed with ampullary tumors.


Subject(s)
Adenocarcinoma , Adenoma , Adenomatous Polyps , Carcinoma , Colonic Polyps , Colorectal Neoplasms , Common Bile Duct Neoplasms , Duodenal Neoplasms , Intestinal Polyposis , Humans , Colonic Polyps/pathology , Retrospective Studies , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Adenoma/epidemiology , Adenoma/genetics , Adenoma/diagnosis , Colonoscopy , Adenocarcinoma/epidemiology , Adenocarcinoma/genetics , Duodenal Neoplasms/pathology , Common Bile Duct Neoplasms/epidemiology , Common Bile Duct Neoplasms/genetics
16.
Front Public Health ; 11: 1294203, 2023.
Article in English | MEDLINE | ID: mdl-38269381

ABSTRACT

Safety training (ST) is essential in avoiding unsafe behavior of construction workers. With the rise of metaverse technology, metaverse safety training (MST) has gradually become a new model to guide construction workers in safety production. An in-depth study of construction workers' willingness to accept the metaverse safety training (WAMST) helps improve its effectiveness, but studies need to pay more attention to it. This study constructs a conceptual model of WAMST for construction workers, and the influencing factors of WAMST are explained based on the extended Unified Theory of Acceptance and Use of Technology (UTAUT). It established a Structural equation modeling to verify the relationship between influencing factors. An example verifies the feasibility of the model. The results show that the framework significantly contributes to the willingness of construction workers to participate and improves safety awareness. Specifically, performance expectancy, effort expectancy, social influence, and convenient conditions significantly affect the construction workers' willingness to accept. Convenient conditions have a direct effect on actual behavior. Willingness to accept plays a mediating role between performance expectancy and actual behavior. Perceived trust moderates the effect between willingness to accept and actual behavior, and the force of positive interpretation increases proportionally. It confirms how to improve the safety capacity of construction workers and provides references for governments, enterprises, and projects to formulate ST strategies.


Subject(s)
Construction Industry , Humans , Government , Latent Class Analysis , Technology , Trust
17.
Front Cardiovasc Med ; 9: 895916, 2022.
Article in English | MEDLINE | ID: mdl-35865386

ABSTRACT

Menopause is associated with dyslipidemia and an increased risk of cardiovascular disease, the underlying mechanism of dyslipidemia is attributed to an insufficiency of estrogen. In this study, we find that estrogen mediates an atherosclerotic-protective action via estrogen receptor alpha/SREBP-1 signaling. Increased lipid accumulation and low-density lipoprotein (LDL)-uptake in HepG2 cells and THP-1 macrophages were induced by treatment of mixed hyperlipidemic serum from postmenopausal women; 17ß-estradiol [estrogen (E2)] (10 nM) administration significantly improved hyperlipidemic profiles, relieved fatty-liver damage and attenuated the plaque area in the heart chamber of high-fat diet (HFD)-fed ovariectomized (OVX) ApoE -/ - mice. Expression of sterol regulatory element-binding protein (SREBP)-1 mRNA of circulating leukocytes in postmenopausal women was strongly correlated to the serum E2 level. Exploration of data from the Gene Expression Profiling Interactive Analysis (GEPIA) database revealed that expression of SREBP-1 protein correlated to expression of estrogen receptor (ESR)α protein in the liver, blood and in normal tissue. Genetic overexpression/inhibition of ESRα resulted in increased/decreased SREBP-1 expression as well as attenuated/deteriorated lipid deposition in vitro. An inhibitor of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway, AZD8055, abolished ESRα-induced SREBP-1 expression in HepG2 cells. Moreover, E2 and statin co-treatment significantly reduced lipid accumulation in vitro and hindered the progression of atherosclerosis and fatty-liver damage in OVX ApoE -/ - mice. Collectively, our results suggest that estrogen could exerted its atherosclerotic-protective action via ESRα/SREBP-1 signaling. E2 might enhance the cellular sensitivity of statins and could be used as a novel therapeutic strategy against atherosclerotic disorders in postmenopausal women.

18.
Front Microbiol ; 13: 911408, 2022.
Article in English | MEDLINE | ID: mdl-35903476

ABSTRACT

Weizhou Island and Xieyang Island are two large and young volcanic sea islands in the northern part of the South China Sea. In this study, high-throughput sequencing (HTS) of 16S rRNA genes was used to explore the diversity of Actinobacteria in the Weizhou and Xieyang Islands. Moreover, a traditional culture-dependent method was utilized to isolate Actinobacteria, and their antibacterial and cytotoxic activities were detected. The alpha diversity indices (ACE metric) of the overall bacterial communities for the larger island (Weizhou) were higher than those for the smaller island (Xieyang). A beta diversity analysis showed a more dispersive pattern of overall bacterial and actinobacterial communities on a larger island (Weizhou). At the order level, Frankiales, Propionibacteriales, Streptomycetales, Micrococcales, Pseudonocardiales, Micromonosporales, Glycomycetales, Corynebacteriales, and Streptosporangiales were the predominant Actinobacteria. A total of 22.7% of the OTUs shared 88%-95% similarity with some known groups. More interestingly, 15 OTUs formed a distinct and most predominant clade, and shared identities of less than 95% with any known families. This is the first report about this unknown group and their 16S rRNA sequences obtained from volcanic soils. A total of 268 actinobacterial strains were isolated by the culture-dependent method. Among them, 55 Streptomyces species were isolated, representing that 76.6% of the total. S. variabilis and S. flavogriseus were the most abundant. Moreover, some rare Actinobacteria were isolated. These included Micromonospora spp., Nocardia spp., Amycolatopsis spp., Tsukamurella spp., Mycobacterium spp., and Nonomuraea spp. Among them, eight Streptomyces spp. exhibited antibacterial activity against Bacillus cereus. Only three strains inhibited the growth of Escherichia coli. Four strains showed good activity against aquatic pathogenic bacterial strains of Streptococcus iniae. The cytotoxicity assay results showed that 27 strains (10.07%) exhibited cytotoxic activity against HeLa and A549 cell lines. Many actinobacterial strains with cytotoxic activity were identified as rare Actinobacteria, which illustrated that volcanic islands are vast reservoirs for Actinobacteria with promising antibacterial and cytotoxic activity. This study may significantly improve our understanding of actinobacterial communities on volcanic islands. The isolated Actinobacteria showed promising prospects for future use.

20.
Front Cardiovasc Med ; 9: 874436, 2022.
Article in English | MEDLINE | ID: mdl-35722095

ABSTRACT

The ability of blood transcriptome analysis to identify dysregulated pathways and outcome-related genes following myocardial infarction remains unknown. Two gene expression datasets (GSE60993 and GSE61144) were downloaded from Gene Expression Omnibus (GEO) Datasets to identify altered plasma transcriptomes in patients with ST-segment elevated myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention. GEO2R, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes annotations, protein-protein interaction analysis, etc., were adopted to determine functional roles and regulatory networks of differentially expressed genes (DEGs). Dysregulated expressomes were verified at transcriptional and translational levels by analyzing the GSE49925 dataset and our own samples, respectively. A total of 91 DEGs were identified in the discovery phase, consisting of 15 downregulated genes and 76 upregulated genes. Two hub modules consisting of 12 hub genes were identified. In the verification phase, six of the 12 hub genes exhibited the same variation patterns at the transcriptional level in the GSE49925 dataset. Among them, S100A12 was shown to have the best discriminative performance for predicting in-hospital mortality and to be the only independent predictor of death during follow-up. Validation of 223 samples from our center showed that S100A12 protein level in plasma was significantly lower among patients who survived to discharge, but it was not an independent predictor of survival to discharge or recurrent major adverse cardiovascular events after discharge. In conclusion, the dysregulated expression of plasma S100A12 at the transcriptional level is a robust early prognostic factor in patients with STEMI, while the discrimination power of the protein level in plasma needs to be further verified by large-scale, prospective, international, multicenter studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...