Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Transl Oncol ; 45: 101978, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38701650

ABSTRACT

OBJECTIVE: This study aimed to investigate TCF19's role in lung cancer development, specifically its involvement in the RAF/MEK/ERK signaling pathway. METHODS: Lung cancer tissue analysis revealed significant TCF19 overexpression. In vitro experiments using A549 and Hop62 cells with TCF19 overexpression demonstrated enhanced cell growth. Transgenic mouse models confirmed TCF19's role in primary tumor development. Transcriptome sequencing identified altered gene expression profiles, linking TCF19 to RAF/MEK/ERK pathway activation. Functional assays elucidated underlying mechanisms, revealing increased phosphorylation of Raf1, MEK1/2, and ERK1/2. Inhibiting RAF1 or ERK through shRaf1 or ERK inhibitor reduced cell cycle-related proteins and inhibited TCF19-overexpressing cell growth. RESULTS: TCF19 was identified as an oncogene in lung carcinoma, specifically impacting the RAF/MEK/ERK pathway. Elevated TCF19 levels in lung cancer suggest targeting TCF19 or its associated pathways as a promising strategy for disease management. CONCLUSION: This study unveils TCF19's oncogenic role in lung cancer, emphasizing its modulation of the RAF/MEK/ERK pathway and presenting a potential therapeutic target for TCF19-overexpressing lung cancers.

2.
PeerJ ; 12: e17260, 2024.
Article in English | MEDLINE | ID: mdl-38680884

ABSTRACT

Chronic kidney disease (CKD) represents a significant global health concern, with renal fibrosis emerging as a prevalent and ultimate manifestation of this condition. The absence of targeted therapies presents an ongoing and substantial challenge. Accumulating evidence suggests that the integrity and functionality of mitochondria within renal tubular epithelial cells (RTECs) often become compromised during CKD development, playing a pivotal role in the progression of renal fibrosis. Mitophagy, a specific form of autophagy, assumes responsibility for eliminating damaged mitochondria to uphold mitochondrial equilibrium. Dysregulated mitophagy not only correlates with disrupted mitochondrial dynamics but also contributes to the advancement of renal fibrosis in CKD. While numerous studies have examined mitochondrial metabolism, ROS (reactive oxygen species) production, inflammation, and apoptosis in kidney diseases, the precise pathogenic mechanisms underlying mitophagy in CKD remain elusive. The exact mechanisms through which modulating mitophagy mitigates renal fibrosis, as well as its influence on CKD progression and prognosis, have not undergone systematic investigation. The role of mitophagy in AKI has been relatively clear, but the role of mitophagy in CKD is still rare. This article presents a comprehensive review of the current state of research on regulating mitophagy as a potential treatment for CKD. The objective is to provide fresh perspectives, viable strategies, and practical insights into CKD therapy, thereby contributing to the enhancement of human living conditions and patient well-being.


Subject(s)
Mitophagy , Renal Insufficiency, Chronic , Animals , Humans , Disease Progression , Fibrosis/pathology , Fibrosis/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/metabolism
3.
Biochem Biophys Res Commun ; 706: 149744, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38479244

ABSTRACT

Acute kidney injury (AKI) is a common clinical disease with a high incidence and mortality rate. It typically arises from hemodynamic alterations, sepsis, contrast agents, and toxic drugs, instigating a series of events that culminate in tissue and renal damage. This sequence of processes often leads to acute renal impairment, prompting the initiation of a repair response. Cellular senescence is an irreversible arrest of the cell cycle. Studies have shown that renal cellular senescence is closely associated with AKI through several mechanisms, including the promotion of oxidative stress and inflammatory response, telomere shortening, and the down-regulation of klotho expression. Exploring the role of cellular senescence in AKI provides innovative therapeutic ideas for both the prevention and treatment of AKI. Furthermore, it has been observed that targeted removal of senescent cells in vivo can efficiently postpone senescence, resulting in an enhanced prognosis for diseases associated with senescence. This article explores the effects of common anti-senescence drugs senolytics and senostatic and lifestyle interventions on renal diseases, and mentions the rapid development of mesenchymal stem cells (MSCs). These studies have taken senescence-related research to a new level. Overall, this article comprehensively summarizes the studies on cellular senescence in AKI, aiming is to elucidate the relationship between cellular senescence and AKI, and explore treatment strategies to improve the prognosis of AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cells , Humans , Acute Kidney Injury/metabolism , Cellular Senescence , Kidney/metabolism , Mesenchymal Stem Cells/metabolism , Oxidative Stress
4.
Drug Discov Today ; 29(1): 103833, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992888

ABSTRACT

The demand for human cytomegalovirus (HCMV) vaccines was first raised by a committee convened during the 1990s. A comprehensive investigation into the mechanism of viral infection supports the prioritization of developing drugs or vaccines that specifically target receptors and ligands involved in the infection process. As primary targets for neutralizing antibodies to combat HCMV, viral ligands (trimer, pentamer, and glycoprotein B) have crucial roles and exhibit substantial antiviral potential, which could be exploited for breakthroughs in antiviral research.


Subject(s)
Cytomegalovirus Infections , Vaccines , Humans , Cytomegalovirus , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/prevention & control , Membrane Glycoproteins , Viral Envelope Proteins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use
5.
BMC Microbiol ; 23(1): 385, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38053056

ABSTRACT

BACKGROUND: Corynebacterium pyruviciproducens is a recently described species of Corynebacterium. There are few reports on the microbiological characteristics of the new species, and there is a lack of reports on the genomic analysis of the species. RESULTS: This study involved a clinical isolate from the pus of a hospital patient with sebaceous gland abscesses. The clinically isolated strain was identified as C. pyruviciproducens strain WYJY-01. In this study, referring to Koch's postulates, we observed the pathological changes of animal models infected by intraperitoneal injection and subcutaneous injection of pure culture of the strain WYJY-01. Furthermore, the strain WYJY-01 was isolated and cultured again from animal models' subcutaneous abscess drainage fluid. Subsequently, the genomics of the strain WYJY-01 was analyzed. By comparing various gene databases, this study predicted the core secondary metabolite gene cluster of the strain WYJY-01, virulence factor genes carried by prophage, pathogenicity islands, and resistance islands. In addition, the genomes of C. pyruviciproducens strain WYJY-01, ATCC BAA-1742 T, and UMB0763 were analyzed by comparative genomics, and the differential genes of strain WYJY-01 were compared, and their functions were analyzed. CONCLUSION: The findings showed that the strain WYJY-01 had pathogenicity, supplementing the phenotype characteristics of C. pyruviciproducens. Meanwhile, this research revealed the possible molecular mechanism of the pathogenicity of the strain WYJY-01 at the gene level through whole genome sequence analysis, providing a molecular basis for further research.


Subject(s)
Corynebacterium , Genomics , Animals , Humans , Corynebacterium/genetics , Virulence/genetics , Phenotype , Genome, Bacterial , Phylogeny
6.
Front Pharmacol ; 14: 1294966, 2023.
Article in English | MEDLINE | ID: mdl-37954841

ABSTRACT

The human immunodeficiency virus (HIV) persists in latently infected CD4+T cells and integrates with the host genome until cell death. Acquired immunodeficiency syndrome (AIDS) is associated with HIV-1. Possibly, treating HIV/AIDS is an essential but challenging clinical goal. This review provides a detailed account of the types and mechanisms of monotherapy and combination therapy against HIV-1 and describes nanoparticle and hydrogel delivery systems. In particular, the recently developed capsid inhibitor (Lenacapavir) and the Ainuovirine/tenofovir disoproxil fumarate/lamivudine combination (ACC008) are described. It is interestingly to note that the lack of the multipass transmembrane proteins serine incorporator 3 (SERINC3) and the multipass transmembrane proteins serine incorporator 5 (SERINC5) may be one of the reasons for the enhanced infectivity of HIV-1. This discovery of SERINC3 and SERINC5 provides new ideas for HIV-1 medication development. Therefore, we believe that in treating AIDS, antiviral medications should be rationally selected for pre-exposure and post-exposure prophylaxis to avoid the emergence of drug resistance. Attention should be paid to the research and development of new drugs to predict HIV mutations as accurately as possible and to develop immune antibodies to provide multiple guarantees for the cure of AIDS.

7.
Biomater Adv ; 154: 213650, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37857084

ABSTRACT

The treatment of breast cancer relies heavily on chemotherapy, but chemotherapy is limited by the disadvantages of poor targeting, susceptibility to extracellular matrix (ECM) interference and a short duration of action in tumor cells. To address these limitations, we developed an amphipathic peptide containing an RGD motif, Pep1, that encapsulated paclitaxel (PTX) and losartan potassium (LP) to form the drug-loaded peptide PL/Pep1. PL/Pep1 self-assembled into spherical nanoparticles (NPs) under normal physiological conditions and transformed into aggregates containing short nanofibers at acidic pH. The RGD peptide facilitated tumor targeting and the aggregates prolonged drug retention in the tumor, which allowed more drug to reach and accumulate in the tumor tissue to promote apoptosis and remodel the tumor microenvironment. The results of in vitro and in vivo experiments confirmed the superiority of PL/Pep1 in terms of targeting, prolonged retention and facilitated penetration for antitumor therapy. In conclusion, amphipathic peptides as coloaded drug carriers are a new platform and strategy for breast cancer chemotherapy.


Subject(s)
Breast Neoplasms , Nanoparticles , Humans , Female , Breast Neoplasms/drug therapy , Paclitaxel/therapeutic use , Paclitaxel/pharmacology , Peptides/therapeutic use , Drug Carriers , Tumor Microenvironment
8.
Sci Rep ; 13(1): 14247, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648696

ABSTRACT

The minority people panmicrobial community database (MPPCD website: http://mppmcdb.cloudna.cn/ ) is the first microbe-disease association database of Chinese ethnic minorities. To research the relationships between intestinal microbes and diseases/health in the ethnic minorities, we collected the microbes of the Han people for comparison. Based on the data, such as age, among the different ethnic groups of the different regions of Sichuan Province, MPPCD not only provided the gut microbial composition but also presented the relative abundance value at the phylum, class, order, family and genus levels in different groups. In addition, differential analysis was performed in different microbes in the two different groups, which contributed to exploring the difference in intestinal microbe structures between the two groups. Meanwhile, a series of related factors, including age, sex, body mass index, ethnicity, physical condition, and living altitude, were included in the MPPCD, with special focus on living altitude. To date, this is the first intestinal microbe database to introduce altitude features. In conclusion, we hope that MPPCD will serve as a fundamental research support for the relationship between human gut microbes and host health and disease, especially in ethnic minorities.


Subject(s)
Gastrointestinal Microbiome , Humans , Minority Groups , Ethnic and Racial Minorities , Ethnicity , China
9.
Viruses ; 15(7)2023 06 29.
Article in English | MEDLINE | ID: mdl-37515165

ABSTRACT

Owing to the rapid changes in the antigenicity of influenza viruses, it is difficult for humans to obtain lasting immunity through antiviral therapy. Hence, tracking the dynamic changes in the antigenicity of influenza viruses can provide a basis for vaccines and drug treatments to cope with the spread of influenza viruses. In this paper, we developed a novel quantitative prediction method to predict the antigenic distance between virus strains using attribute network embedding techniques. An antigenic network is built to model and combine the genetic and antigenic characteristics of the influenza A virus H3N2, using the continuous distributed representation of the virus strain protein sequence (ProtVec) as a node attribute and the antigenic distance between virus strains as an edge weight. The results show a strong positive correlation between supplementing genetic features and antigenic distance prediction accuracy. Further analysis indicates that our prediction model can comprehensively and accurately track the differences in antigenic distances between vaccines and influenza virus strains, and it outperforms existing methods in predicting antigenic distances between strains.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype , Antigens, Viral , Influenza A virus/genetics , Amino Acid Sequence , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Antigenic Variation
10.
PeerJ ; 11: e15325, 2023.
Article in English | MEDLINE | ID: mdl-37197582

ABSTRACT

Rapid and accurate identification of specific sepsis pathogens is critical for patient treatment and disease control. This study aimed to establish a new application for the rapid identification of common pathogens in patients with suspected sepsis and evaluate its role in clinical application. A multiplex PCR assay was designed to simultaneously amplify specific conserved regions of nine common pathogenic microorganisms in sepsis, including Acinetobacter baumannii, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumonia, and Candida albicans. The PCR products were analyzed by a membrane biochip. The analytical sensitivity of the assay was determined at a range of 5-100 copies/reaction for each standard strain, and the detection range was 20-200 cfu/reaction in a series dilution of simulated clinical samples at different concentrations. Out of the 179 clinical samples, the positive rate for pathogens detected by the membrane biochip assay and blood culture method was 20.11% (36/179) and 18.44% (33/179), respectively. However, by comparing the positive rate of the nine common pathogens we detected, the membrane biochip assay tended to be more sensitive than the blood culture method (20.11% vs 15.64%). The clinical sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the membrane biochip assay were 92.9%, 93.2%, 72.2% and 98.6%, respectively. Generally, this multiplex PCR combined membrane biochip assay can be used to detect major sepsis pathogens, and is useful for early initiation of effective antimicrobial treatment, and is feasible for sepsis pathogens identification in routine clinical practice.


Subject(s)
Multiplex Polymerase Chain Reaction , Sepsis , Humans , Multiplex Polymerase Chain Reaction/methods , Sensitivity and Specificity , Sepsis/diagnosis , Staphylococcus aureus/genetics , Predictive Value of Tests , Escherichia coli
11.
Front Genet ; 13: 761178, 2022.
Article in English | MEDLINE | ID: mdl-35222528

ABSTRACT

Pathogenic variants in CHD2 have been reported to have a wide range of phenotypic variability in neurodevelopmental disorders, such as early-onset epileptic encephalopathy, developmental delay, and behavior problems. So far, there is no clear correlation between genotypes and phenotypes. This study reports a Chinese patient with a novel heterozygous CHD2 mutation (c.4318C>T, pArg1440*). Her main clinical manifestations include developmental delay, myoclonic epilepsy, and hypothyroidism. Then, we reviewed a total of 144 individuals carrying CHD2 variants with epileptic encephalopathy. In terms of clinical manifestations, these patients are usually described with variable epilepsy phenotypes, including idiopathic photosensitive occipital epilepsy, Dravet syndrome, Jeavons syndrome, Lennox-Gastaut syndrome, juvenile myoclonic epilepsy, and non-specific epileptic encephalopathy. Among them, myoclonic seizures and generalized tonic-clonic seizures are the main seizure types in all patients hosting CHD2 single-nucleotide or indel variants (non-CNVs). At the molecular level, there are 102 types of CHD2 non-CNVs in 126 patients, almost one mutational type corresponding to one person, and there is no difference in the incidence ratio of each position. Furthermore, we summarized that a small proportion of patients inherited CHD2 variants, and not all patients with CHD2 variants had seizures. Importantly, the phenotypes, especially seizures control and fever sensitivity, and genotypes had a relative association. These results enriched the database of CHD2-relative neurodevelopmental disorders and provided a theoretical foundation for researching the relationship between genotypes and phenotypes.

12.
BMC Pulm Med ; 22(1): 72, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35216582

ABSTRACT

BACKGROUND: High altitude pulmonary edema (HAPE) is a hypoxia-induced non-cardiogenic pulmonary edema that typically occurred in un-acclimatized lowlanders, which inevitably leads to life-threatening consequences. Apart from multiple factors involved, the genetic factors also play an important role in the pathogenesis of HAPE. So far, researchers have put more energy into the nuclear genome and HAPE, and ignored the relationship between the mitochondrion DNA (mtDNA) variants and HAPE susceptibility. METHODS: We recruited a total of 366 individuals including 181 HAPE patients and 185 non-HAPE populations through two times. The first time, 49 HAPE patients and 58 non-HAPE individuals were performed through whole mtDNA sequences to search the mutations and haplogroups. The second time, 132 HAPE patients and 127 non-HAPE subjects were collected to apply verifying these mutations and haplogroups of mtDNA with the routine PCR method. RESULTS: We analyzed and summarized the clinical characteristics and sequence data for the 49 HAPE patients and 58 non-HAPE individuals. We found that a series of routine blood indexes including systolic arterial blood pressure (SBP), heart rate (HR), white blood cell (WBC), and C-reactive protein (CRP) in the HAPE group presented higher and displayed significant differences compared with those in the non-HAPE group. Although the average numbers of variants in different region and group samples were not statistically significant (P > 0.05), the mutation densities of different regions in the internal group showed significant differences. Then we found two mutations (T16172C and T16519C) associated with the HAPE susceptibility, the T16172C mutation increased the risk of HAPE, and the T16519C mutation decreased the HAPE rating. Furthermore, the two mutations were demonstrated with 132 HAPE patients and 127 non-HAPE individuals. Unfortunately, all the haplogroups were not associated with the HAPE haplogroups. CONCLUSIONS: We provided evidence of differences in mtDNA polymorphism frequencies between HAPE and non-HAPE Han Chinese. Genotypes of mtDNA 16172C and 16519C were correlated with HAPE susceptibility, indicating the role of the mitochondrial genome in the pathogenesis of HAPE.


Subject(s)
Altitude , Pulmonary Edema , Asian People/genetics , China , DNA, Mitochondrial/genetics , Humans , Mitochondria
13.
Stem Cell Res ; 57: 102571, 2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34763229

ABSTRACT

Bain type X-linked mental retardation syndrome is an X-linked dominant neurodevelopmental disorder characterized by psychomotor developmental delay and intellectual disability. The rare syndrome is caused by HNRNPH2 gene mutation. In this study, the iPSC cell line (SMCPGi001-A) was acquired by Sendai virus-mediated iPSC reprogramming from the peripheral blood mononuclear cells (PBMCs) obtained from a 1-year-old girl with de novo p.R206W mutation in the HNRNPH2 gene. The identification experiments of stemness and differentiation potential of three germ layers showed that the cell line had pluripotent stem cell characteristics and the potential of tridermal differentiation.

16.
Can J Cardiol ; 36(6): 915-930, 2020 06.
Article in English | MEDLINE | ID: mdl-32439306

ABSTRACT

With more than 1,800,000 cases and 110,000 deaths globally, COVID-19 is one of worst infectious disease outbreaks in history. This paper provides a critical review of the available evidence regarding the lessons learned from the Chinese experience with COVID-19 prevention and management. The steps that have led to a near disappearance of new cases in China included rapid sequencing of the virus to establish testing kits, which allowed tracking of infected persons in and out of Wuhan. In addition, aggressive quarantine measures included the complete isolation of Wuhan and then later Hubei Province and the rest of the country, as well as closure of all schools and nonessential businesses. Other measures included the rapid construction of two new hospitals and the establishment of "Fangcang" shelter hospitals. In the absence of a vaccine, the management of COVID-19 included antivirals, high-flow oxygen, mechanical ventilation, corticosteroids, hydroxychloroquine, tocilizumab, interferons, intravenous immunoglobulin, and convalescent plasma infusions. These measures appeared to provide only moderate success. Although some measures have been supported by weak descriptive data, their effectiveness is still unclear pending well controlled clinical trials. In the end, it was the enforcement of drastic quarantine measures that stopped SARS-CoV-2 from spreading. The earlier the implementation, the less likely resources will be depleted. The most critical factors in stopping a pandemic are early recognition of infected individuals, carriers, and contacts and early implementation of quarantine measures with an organised, proactive, and unified strategy at a national level. Delays result in significantly higher death tolls.


Subject(s)
Betacoronavirus , Communicable Disease Control , Coronavirus Infections , Pandemics , Patient Care Management , Pneumonia, Viral , Betacoronavirus/isolation & purification , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Humans , Pandemics/prevention & control , Patient Care Management/methods , Patient Care Management/organization & administration , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , SARS-CoV-2
17.
Clin Rev Allergy Immunol ; 59(1): 89-100, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32328954

ABSTRACT

The COVID-19 pandemic is a significant global event in the history of infectious diseases. The SARS-CoV-2 appears to have originated from bats but is now easily transmissible among humans, primarily through droplet or direct contact. Clinical features of COVID-19 include high fever, cough, and fatigue which may progress to ARDS. Respiratory failure can occur rapidly after this. The primary laboratory findings include lymphopenia and eosinopenia. Elevated D-dimer, procalcitonin, and CRP levels may correlate with disease severity. Imaging findings include ground-glass opacities and patchy consolidation on CT scan. Mortality is higher in patients with hypertension, cardiac disease, diabetes mellitus, cancer, and COPD. Elderly patients are more susceptible to severe disease and death, while children seem to have lower rates of infection and lower mortality. Diagnostic criteria and the identification of persons under investigation have evolved as more data has emerged. However, the approach to diagnosis is still very variable from region to region, country to country, and even among different hospitals in the same city. The importance of a clinical pathway to implement the most effective and relevant diagnostic strategy is of critical importance to establish the control of this virus that is responsible for more and more deaths each day.


Subject(s)
Antibodies, Viral/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Lung/diagnostic imaging , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Algorithms , Betacoronavirus/immunology , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Critical Pathways , Early Diagnosis , Evidence-Based Practice , False Negative Reactions , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Medical History Taking , Pandemics , Patient Isolation , Quarantine , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2 , Serologic Tests/methods , Severity of Illness Index , Tomography, X-Ray Computed
18.
J Autoimmun ; 109: 102434, 2020 05.
Article in English | MEDLINE | ID: mdl-32143990

ABSTRACT

The 2019-nCoV is officially called SARS-CoV-2 and the disease is named COVID-19. This viral epidemic in China has led to the deaths of over 1800 people, mostly elderly or those with an underlying chronic disease or immunosuppressed state. This is the third serious Coronavirus outbreak in less than 20 years, following SARS in 2002-2003 and MERS in 2012. While human strains of Coronavirus are associated with about 15% of cases of the common cold, the SARS-CoV-2 may present with varying degrees of severity, from flu-like symptoms to death. It is currently believed that this deadly Coronavirus strain originated from wild animals at the Huanan market in Wuhan, a city in Hubei province. Bats, snakes and pangolins have been cited as potential carriers based on the sequence homology of CoV isolated from these animals and the viral nucleic acids of the virus isolated from SARS-CoV-2 infected patients. Extreme quarantine measures, including sealing off large cities, closing borders and confining people to their homes, were instituted in January 2020 to prevent spread of the virus, but by that time much of the damage had been done, as human-human transmission became evident. While these quarantine measures are necessary and have prevented a historical disaster along the lines of the Spanish flu, earlier recognition and earlier implementation of quarantine measures may have been even more effective. Lessons learned from SARS resulted in faster determination of the nucleic acid sequence and a more robust quarantine strategy. However, it is clear that finding an effective antiviral and developing a vaccine are still significant challenges. The costs of the epidemic are not limited to medical aspects, as the virus has led to significant sociological, psychological and economic effects globally. Unfortunately, emergence of SARS-CoV-2 has led to numerous reports of Asians being subjected to racist behavior and hate crimes across the world.


Subject(s)
Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Severe Acute Respiratory Syndrome/history , Animals , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , China/epidemiology , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/drug therapy , Coronavirus Infections/economics , Coronavirus Infections/prevention & control , Genome, Viral , History, 21st Century , Humans , Information Dissemination , Pandemics/economics , Pandemics/prevention & control , Pneumonia, Viral/diagnosis , Pneumonia, Viral/economics , Pneumonia, Viral/prevention & control , Pyroptosis , Quarantine , SARS-CoV-2 , Severe Acute Respiratory Syndrome/prevention & control , Zoonoses/virology , COVID-19 Drug Treatment
19.
J Cell Biochem ; 121(3): 2543-2558, 2020 03.
Article in English | MEDLINE | ID: mdl-31696971

ABSTRACT

Long noncoding RNAs (lncRNAs) play crucial roles in hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of small nucleolar RNA host gene 16 (SNHG16) for regulating the cell cycle and epithelial to mesenchymal transition (EMT) remain elusive. In this study, SNHG16 expression profiles of HCC tissues or cell lines were compared with those of normal tissues or hepatocyte cell line. The effect of SNHG16 knockdown in HCC cell lines was investigated by using in vitro loss-of-function experiments and in vivo nude mouse experiments. The potential molecular regulatory mechanism of SNHG16 in HCC progression was investigated by using mechanistic experiments and rescue assays. The results revealed that SNHG16 was highly expressed in HCC tissues and cell lines, which predicted poor prognosis of HCC patients. On one hand, the downregulation of SNHG16 induced G2/M cell cycle arrest, inducing cell apoptosis and suppression of cell proliferation. On the other hand, it inhibited cell metastasis and EMT progression demonstrated by in vitro loss-of-function cell experiments. Besides, knockdown of SNHG16 increased the sensitivity of HCC cells to cisplatin. For the detailed mechanism, SNHG16 was demonstrated to act as a let-7b-5p sponge in HCC. SNHG16 facilitated the G2/M cell cycle transition by directly acting on the let-7b-5p/CDC25B/CDK1 axis, and promoted cell metastasis and EMT progression by regulating the let-7b-5p/HMGA2 axis in HCC. In addition, the mechanism of SNHG16 for regulating HCC cell proliferation and metastasis was further confirmed in vivo by mouse experiments. Furthermore, these results can provide new insights into HCC treatment and its molecular pathogenesis, which may enlighten the further research of the molecular pathogenesis of HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Cell Cycle Checkpoints , Epithelial-Mesenchymal Transition , HMGA2 Protein/metabolism , MicroRNAs/genetics , RNA, Long Noncoding/genetics , cdc25 Phosphatases/metabolism , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Movement , Cell Proliferation , Gene Expression Regulation, Neoplastic , HMGA2 Protein/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , cdc25 Phosphatases/genetics
20.
Carbohydr Polym ; 181: 150-158, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29253957

ABSTRACT

Polymer-based paclitaxel (PTX) conjugates have demonstrated application potentials to improve the water solubility and enhance the efficiency of drug delivery. In this study, a novel HA-based drug conjugate, HA-6-PTX, was designed and successfully synthesized by chemically grafting PTX to the C-6 position of N-acetyl-d-glucosamine (GlcNAc) of hyaluronic acid (HA) using hexanediamine as the linker. Leaving the carboxylate of HA chain unaffected, the conjugate with drug loading as high as 21.8% showed an excellent water solubility of 168mg/mL and exhibited increased drug release in the presence of hyaluronidase. Compared to free PTX, HA-6-PTX demonstrated increased cytotoxicity and enhanced apoptosis-inducing effect against HepG2 and A549 cells due to the increased cellular uptake of drug via HA-receptor mediated endocytosis. It was concluded that the HA-6-PTX conjugate could be potentially utilized for further exploration as targeted drug delivery to enhance antitumor efficacy.


Subject(s)
Acetamides/chemistry , Diamines/chemistry , Drug Delivery Systems , Hexanes/chemistry , Hyaluronic Acid/chemistry , Neoplasms/drug therapy , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Acetamides/chemical synthesis , Apoptosis/drug effects , Carbon-13 Magnetic Resonance Spectroscopy , Cell Death/drug effects , Diamines/chemical synthesis , Drug Liberation , Endocytosis/drug effects , Flow Cytometry , Hep G2 Cells , Hexanes/chemical synthesis , Humans , Hyaluronic Acid/chemical synthesis , Neoplasms/pathology , Paclitaxel/pharmacology , Proton Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...