Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Thorac Dis ; 15(2): 472-483, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36910094

ABSTRACT

Background: Whether individuals with non-obstructive spirometry-defined small airway dysfunction (SAD) have impaired exercise capacity is unclear, particularly in never-smokers. This study clarifies the degree of impaired exercise capacity and its potential cause in individuals with non-obstructive SAD. Methods: This community-based, multiyear cross-sectional study analyzed data collected in Guangdong, China from 2012-2019 by the National Science and Technology Support Plan Program. Measurements of exercise capacity [peak work rate and peak oxygen uptake ( V ˙ O 2peak )] in participants with non-obstructive spirometry-defined SAD (n=157) were compared with those in controls (n=85) and Global Initiative for Chronic Obstructive Lung Disease (GOLD) I patients (n=239). Subgroup analyses were performed by smoking status. Results: The risk of impaired exercise capacity was significantly higher in participants with non-obstructive SAD [ V ˙ O 2peak <84%predicted, adjusted odds ratio (aOR) =2.53; 95% confidence interval (CI): 1.42-4.52] than in controls but was not significantly different from that in GOLD I patients. Results were consistent within subgroups of smoking status (ever-smokers: non-obstructive SAD vs. controls, aOR =2.44; 95% CI: 1.08-5.51; never-smokers: non-obstructive SAD vs. controls, aOR =2.38, 95% CI: 1.02-5.58). Participants with non-obstructive SAD had a significantly lower peak work rate (ß=-10.5; 95% CI: -16.3 to -4.7) and V ˙ O 2peak (%predicted, ß=-4.0; 95% CI: -7.7 to -0.2) and tended to have higher ventilatory equivalents for carbon dioxide at the ventilatory threshold ( V ˙ E / V ˙ CO 2AT , ß=1.1; 95% CI: -0.1 to 2.3) when compared with controls. Both peak work rate and V ˙ O 2peak were negatively correlated with V ˙ E / V ˙ CO 2AT . Conclusions: Although not meeting the current criteria for chronic obstructive pulmonary disease, individuals with non-obstructive SAD have impaired exercise capacity that may be associated with ventilatory inefficiency regardless of smoking status.

2.
J Cell Mol Med ; 27(4): 515-528, 2023 02.
Article in English | MEDLINE | ID: mdl-36722313

ABSTRACT

Due to the lack of effective treatments, osteoarthritis (OA) remains a challenge for clinicians. Quercetin, a bioflavonoid, has shown potent anti-inflammatory effects. However, its effect on preventing OA progression and the underlying mechanisms are still unclear. In this study, Sprague-Dawley male rats were divided into five groups: control group, OA group (monosodium iodoacetate intra-articular injection), and three quercetin-treated groups. Quercetin-treated groups were treated with intragastric quercetin once a day for 28 days. Gross observation and histopathological analysis showed cartilage degradation and matrix loss in the OA group. High-dose quercetin-group joints showed failure in OA progression. High-dose quercetin inhibited the OA-induced expression of MMP-3, MMP-13, ADAMTS4, and ADAMTS5 and promoted the OA-reduced expression of aggrecan and collagen II. Levels of most inflammatory cytokines and growth factors tested in synovial fluid and serum were upregulated in the OA group and these increases were reversed by high-dose quercetin. Similarly, subchondral trabecular bone was degraded in the OA group and this effect was reversed in the high-dose quercetin group. Our findings indicate that quercetin has a protective effect against OA development and progression possibly via maintaining the inflammatory cascade homeostasis. Therefore, quercetin could be a potential therapeutic agent to prevent OA progression in risk groups.


Subject(s)
Cartilage, Articular , Osteoarthritis , Rats , Animals , Male , Quercetin/pharmacology , Quercetin/therapeutic use , Rats, Sprague-Dawley , Disease Models, Animal , Osteoarthritis/drug therapy , Osteoarthritis/prevention & control , Osteoarthritis/metabolism , Cartilage/metabolism , Cartilage, Articular/pathology
3.
Bioengineered ; 13(3): 7860-7867, 2022 03.
Article in English | MEDLINE | ID: mdl-35298350

ABSTRACT

Listeria monocytogenes is a common foodborne pathogen that presents in various food products, posing important threat to public health. The aim of this study was to establish a rapid and sensitive method with visualization to detect L. monocytogenes based on polymerase spiral reaction (PSR). Primers targeting conserved hlyA gene sequence of L. monocytogenes were designed based on bioinformatics analyses on the current available L. monocytogenes genomes. The isothermal amplification PSR can be completed under constant temperature (65ᵒC) within 60 min with high specificity and sensitivity. Twenty-five reference strains were used to evaluate the specificity of the developed reaction. The results showed that the sensitive of the reaction for L. monocytogenes in purified genomic DNA and artificially contaminated food samples were 41 pg/µL and 103 CFU/mL, respectively. It was 100-fold more sensitive than conventional PCR. In conclusion, this novel PSR method is rapid, cost-efficient, timesaving, and applicable on artificially contaminated food samples, providing broad prospects into the detection of foodborne microbes with the promising on-site inspection.


Subject(s)
Listeria monocytogenes , DNA Primers/genetics , Food Microbiology , Listeria monocytogenes/genetics , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/methods , Sensitivity and Specificity
4.
Bioengineered ; 13(1): 253-267, 2022 01.
Article in English | MEDLINE | ID: mdl-34709974

ABSTRACT

Microorganisms mainly exist in the form of biofilm in nature. Biofilm can contaminate food and drinking water system, as well as cause chronic wound infections, thereby posing a potential threat to public health safety. In the last two decades, researchers have made efforts to investigate the genetic contributors control different stages of biofilm development (adherence, initiation, maturation, and dispersal). As an opportunistic pathogen, C. albicans causes severe superficial or systemic infections with high morbidity and mortality under conditions of immune dysfunction. It has been reported that 80% of C. albicans infections are directly or indirectly associated with biofilm formation on host or abiotic surfaces including indwelling medical devices, resulting in high morbidity and mortality. Significantly, the outcome of C. albicans biofilm development includes enhanced invasion, exacerbated inflammatory responses and intrinsic resistance to antimicrobial chemotherapy. Thus, this review aimed at providing a comprehensive overview of the regulatory network controls microbial biofilm development, with C. albicans as a representative, served as reference for therapeutic targets.


Subject(s)
Antifungal Agents/therapeutic use , Biofilms , Candida albicans/physiology , Candidiasis , Biofilms/drug effects , Biofilms/growth & development , Candidiasis/drug therapy , Candidiasis/metabolism , Candidiasis/mortality , Fungal Proteins/metabolism , Humans
5.
Front Microbiol ; 13: 1104875, 2022.
Article in English | MEDLINE | ID: mdl-36687621

ABSTRACT

It has been reported that about a quarter of the world's agriculture products is unable to be consumed each year because of mold contamination, resulting in incalculable economic losses. Despite modern food technology and the various preservation techniques available, the problem of mold contamination of food is still not adequately controlled. In this study, we simulated the biofilm formed by Aspergillus niger and Penicillium glaucum in liquid and solid food in 96 well cell culture plates and polycarbonate membrane models, respectively, and investigated the fungicidal effect of IPL on planktonic and biofilm molds at three different capacitance parameters at room and refrigerator temperatures. The results show that IPL can achieve fungicidal rates of over 99% for planktonic molds and over 90% for biofilm molds, and that the smaller the capacitance, the more frequent the irradiation required to achieve the same fungicidal rate. In addition, temperature, A. niger or Penicillium glaucum have no effect on the fungicidal effect of IPL. We believe that IPL is a promising non-thermal physical sterilization technique for fungal inhibition on food surfaces.

6.
Front Microbiol ; 13: 1114199, 2022.
Article in English | MEDLINE | ID: mdl-36762094

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is a notorious gram-negative pathogenic microorganism, because of several virulence factors, biofilm forming capability, as well as antimicrobial resistance. In addition, the appearance of antibiotic-resistant strains resulting from the misuse and overuse of antibiotics increases morbidity and mortality in immunocompromised patients. However, it has been underestimated as a foodborne pathogen in various food groups for instance water, milk, meat, fruits, and vegetables. Chemical preservatives that are commonly used to suppress the growth of food source microorganisms can cause problems with food safety. For these reasons, finding effective, healthy safer, and natural alternative antimicrobial agents used in food processing is extremely important. In this review, our ultimate goal is to cover recent advances in food safety related to P. aeruginosa including antimicrobial resistance, major virulence factors, and prevention measures. It is worth noting that food spoilage caused by P. aeruginosa should arouse wide concerns of consumers and food supervision department.

8.
Bioengineered ; 12(1): 6240-6250, 2021 12.
Article in English | MEDLINE | ID: mdl-34486477

ABSTRACT

Although the mechanism of osteoarthritis (OA) has been widely studied and the use of quercetin for OA therapy is well documented, the relevant characteristics of the microbiome and metabolism remain unclear. This study reports changes in the gut microbiota and metabolism during quercetin therapy for OA in a rat model and provides an integrative analysis of the biomechanism. In this study, the rats were categorized into 3 different groups: the OA model, quercetin treatment, and control groups. The OA rats was conducted using a monoiodoacetate (MIA) injection protocol. The rats in the quercetin group received daily intragastric administration of quercetin from day 1 to day 28. Stool samples were collected, and DNA was extracted. We used an integrated approach that combined the sequencing of whole 16S rRNA, short-chain fatty acid (SCFA) measurements and metabolomics analysis by mass spectrometry (MS) to characterize the functional impact of quercetin on the gut microbiota and metabolism in a rat model of OA. The use of quercetin partially abrogated intestinal flora disorder and reversed fecal metabolite abnormalities. Compared with the control rats, the OA rats showed differences at both the class level (Clostridia, Bacteroidia, and Bacilli) and the genus level (Lactobacillus and unidentified Ruminococcaceae). Acetic acid, propionic acid and 24 metabolites were significantly altered among the three groups. However, the changes were significantly abrogated in quercetin-treated OA rats. Consequently, this study provided important evidence regarding perturbations of the gut microbiome and the function of these changes in a potential new mechanism of quercetin treatment.


Subject(s)
Gastrointestinal Microbiome/drug effects , Metabolome/drug effects , Osteoarthritis , Quercetin/pharmacology , Animals , Gastrointestinal Microbiome/genetics , Osteoarthritis/metabolism , Osteoarthritis/microbiology , Rats
9.
Int J Chron Obstruct Pulmon Dis ; 16: 2575-2584, 2021.
Article in English | MEDLINE | ID: mdl-34531653

ABSTRACT

BACKGROUND AND OBJECTIVE: To determine the effects of BSE (biomass smoke exposure) on pulmonary and non-pulmonary changes in patients with COPD compared with normal individuals. METHODS: Using a cohort, we recruited 16 healthy individuals with BSE (BSE normal), 19 patients with BSE+COPD, 13 healthy individuals with cigarette smoke exposure (CSE normal), 25 patients with CSE+COPD, and 25 healthy controls. Patients with GOLD stage I and II COPD were included. Baseline data (demographic data, BSE or CSE, lung function, and CT findings) and follow-up lung function data were collected. CT parameters of emphysema, pulmonary small vessels, airway remodeling, pectoralis muscles, and erector spinae muscle were measured. RESULTS: Individuals with BSE were mainly women (32/35, 91.43%). Compared with the CSE+COPD group, the BSE+COPD group demonstrated slower lung function decline, increased lower lung emphysema, narrower airway lumen dimensions and increased airway wall thickening in the moderate and small airways (all P<0.05). Compared with healthy controls, the CSE normal and BSE normal groups exhibited significant reductions in pulmonary small vessel area and obvious airway remodeling in small airways (P<0.05). Compared with the BSE normal group, the BSE+COPD group showed significantly more severe emphysema and airway remodeling, as well as reduced left pectoralis major muscle area (all P<0.05). CONCLUSION: Healthy individuals with BSE had reduced pulmonary small vessel area and evidence of airway remodeling; patients with BSE and COPD showed more severe emphysema, airway remodeling, and reductions in pectoralis major muscle area. CLINICAL TRIAL REGISTRATION: ChiCTR-OO-14004264.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Biomass , Female , Humans , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/etiology , Smoke , Tomography, X-Ray Computed
10.
Bioengineered ; 12(1): 5173-5183, 2021 12.
Article in English | MEDLINE | ID: mdl-34405758

ABSTRACT

The gut microbiota is widely considered to be involved in several diseases, including atherosclerosis, obesity, chronic obstructive pulmonary disease (COPD) and pulmonary arterial hypertension (PAH). This study aimed to determine if changes in the gut microbiome and metabolome play a major role in the early pathogenesis of PAH. Male Wistar rats were injected with monocrotaline (MCT) (55 mg/kg) at day 1 and injected with calcium-sensing receptor (CaSR) antagonist NPS2143 (4.5 mg/kg/d) from days 1 to 21. Fecal samples were obtained. The gut microbiota and metabolome were analyzed by 16S rRNA gene sequencing and mass spectrometry-based analysis to investigate the effect of PAH in this rat model. MCT injection had a marked effect on the composition of the gut microbiota. This finding was further confirmed by metabolomic analysis with identification of several metabolites relevant to the gut microflora. However, NPS2143 partially abrogated this intestinal flora disorder and reversed fecal metabolite abnormalities. In conclusion, our study shows correlations between changes in the gut microbiome and the metabolome in PAH, which are affected by NPS2143.


Subject(s)
Gastrointestinal Microbiome , Metabolome , Pulmonary Arterial Hypertension , Animals , Calcium/metabolism , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Male , Metabolome/drug effects , Metabolome/genetics , Metabolome/physiology , Monocrotaline/adverse effects , Naphthalenes/metabolism , Naphthalenes/pharmacology , Pulmonary Arterial Hypertension/chemically induced , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/physiopathology , Rats , Rats, Wistar , Receptors, Calcium-Sensing/metabolism
11.
Microcirculation ; 28(6): e12715, 2021 08.
Article in English | MEDLINE | ID: mdl-34008915

ABSTRACT

OBJECTIVES: Although both calcium-sensing receptor (CaSR) and canonical transient receptor potential (TRPC) proteins contribute to chronic hypoxia (CH)-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation, the relationship between CaSR and TRPC in hypoxic PASMCs proliferation remains poorly understood. The goal of this study was to identify that CH promotes PASMCs proliferation through CaSR-TRPC pathway. METHODS: Rat PASMCs were isolated and treated with CH. Cell proliferation was assessed by cell counting, CCK-8 assay, and EdU incorporation. CaSR and TRPC expressions were determined by qPCR and Western blotting. Store-operated Ca2+ entry (SOCE) was assessed by extracellular Ca2+ restoration. RESULTS: In PASMCs, CH enhanced the cell number, cell viability and DNA synthesis, which is accompanied by upregulated expression of CaSR, TRPC1 and TRPC6. Negative CaSR modulators (NPS2143, NPS2390) inhibited, whereas positive modulators (spermine, R568) enhanced, the CH-induced increases in cell number, cell viability and DNA synthesis in PASMCs. Knockdown of CaSR by siRNA inhibited the CH-induced upregulation of TRPC1 and TRPC6 and enhancement of SOCE and attenuated the CH-induced enhancements of cell number, cell viability and DNA synthesis in PASMCs. However, neither siTRPC1 nor siTRPC6 had an effect on the CH-induced CaSR upregulation, although both significantly attenuated the CH-induced enhancements of cell number, cell viability and DNA synthesis in PASMCs. CONCLUSION: These results demonstrate that upregulated CaSR-TRPC1/6 pathway mediating PASMCs proliferation is an important pathogenic mechanism under hypoxic conditions.


Subject(s)
Hypoxia , Animals , Calcium/metabolism , Cell Proliferation , Cells, Cultured , DNA , Hypertension, Pulmonary , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Rats , Signal Transduction , TRPC Cation Channels/genetics , TRPC6 Cation Channel
12.
Cytotechnology ; 73(2): 189-201, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33927476

ABSTRACT

Pulmonary hypertension (PH) is characterized by pulmonary vascular remodeling, which exists in both pulmonary arteries and pulmonary veins. Pulmonary vascular remodeling stems from excessive proliferation of pulmonary vascular myocytes. Platelet-derived growth factor-BB (PDGF-BB) is a vital vascular regulator whose level increases in PH human lungs. Although the mechanisms by which pulmonary arterial smooth muscle cells respond to PDGF-BB have been studied extensively, the effects of PDGF-BB on pulmonary venous smooth muscle cells (PVSMCs) remain unknown. We herein examined the involvement of calcium sensing receptor (CaSR) in PDGF-BB-induced PVSMCs proliferation under hypoxic conditions. In PVSMCs isolated from rat intrapulmonary veins, PDGF-BB increased the cell number and DNA synthesis under normoxic and hypoxic conditions, which was accompanied by upregulated CaSR expression. The influences of PDGF-BB on proliferation and CaSR expression in hypoxic PVSMCs were greater than that in normoxic PVSMCs. In hypoxic PVSMCs superfused with Ca2+-free solution, restoration of extracellular Ca2+ induced an increase of [Ca2+]i, which was significantly smaller than that in PDGF-BB-treated hypoxic PVSMCs. The positive CaSR modulator spermine enhanced, whereas the negative CaSR modulator NPS2143 attenuated, the extracellular Ca2+-induced [Ca2+]i increase in PDGF-BB-treated hypoxic PVSMCs. Furthermore, the spermine enhanced, whereas the NPS2143 inhibited, PDGF-BB-induced proliferation in hypoxic PVSMCs. Silencing CaSR with siRNA attenuated the extracellular Ca2+-induced [Ca2+]i increase in PDGF-BB-treated hypoxic PVSMCs and inhibited PDGF-BB-induced proliferation in hypoxic PVSMCs. In conclusion, these results demonstrated that CaSR mediating PDGF-BB-induced excessive PVSMCs proliferation is an important mechanism involved in the initiation and progression of PVSMCs proliferation under hypoxic conditions.

13.
J Clin Invest ; 130(10): 5562-5575, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32673288

ABSTRACT

Pathologic lymphatic remodeling in lymphedema evolves during periods of tissue inflammation and hypoxia through poorly defined processes. In human and mouse lymphedema, there is a significant increase of hypoxia inducible factor 1 α (HIF-1α), but a reduction of HIF-2α protein expression in lymphatic endothelial cells (LECs). We questioned whether dysregulated expression of these transcription factors contributes to disease pathogenesis and found that LEC-specific deletion of Hif2α exacerbated lymphedema pathology. Even without lymphatic vascular injury, the loss of LEC-specific Hif2α caused anatomic pathology and a functional decline in fetal and adult mice. These findings suggest that HIF-2α is an important mediator of lymphatic health. HIF-2α promoted protective phosphorylated TIE2 (p-TIE2) signaling in LECs, a process also replicated by upregulating TIE2 signaling through adenovirus-mediated angiopoietin-1 (Angpt1) gene therapy. Our study suggests that HIF-2α normally promotes healthy lymphatic homeostasis and raises the exciting possibility that restoring HIF-2α pathways in lymphedema could mitigate long-term pathology and disability.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/deficiency , Lymphatic System/metabolism , Lymphatic System/pathology , Lymphedema/metabolism , Lymphedema/pathology , Angiopoietin-1/genetics , Angiopoietin-1/therapeutic use , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/pathology , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Lymphatic System/embryology , Lymphedema/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Pregnancy , Receptor, TIE-2/metabolism , Signal Transduction
14.
Hypertens Res ; 43(4): 271-280, 2020 04.
Article in English | MEDLINE | ID: mdl-31853041

ABSTRACT

Chronic hypoxia (CH) causes remodeling not only in pulmonary arteries but also in pulmonary veins. Pulmonary vascular remodeling stems from increased pulmonary vascular myocyte proliferation. However, the pathogenesis of CH-induced proliferation of pulmonary venous smooth muscle cells (PVSMCs) remains unknown. The present study aimed to explore the mechanisms by which CH affects PVSMCs proliferation. PVSMCs were isolated from rat distal pulmonary veins and exposed to CH (4% O2 for 60 h). The expression of calcium sensing receptor (CaSR) was determined by immunofluorescence, real-time quantitative PCR and Western blotting. Cell proliferation was assessed by cell counting, CCK-8 assay, and BrdU incorporation. Apoptosis analysis was examined by flow cytometry. In rat distal PVSMCs, CH increased the cell number and cell viability and enhanced DNA synthesis, which is accompanied by upregulated mRNA and protein expression levels of CaSR. Two negative CaSR modulators (NPS2143, NPS2390) not only attenuated CH-induced CaSR upregulation but also inhibited CH-induced increases in cell number, cell viability and the proliferation index of PVSMCs, whereas two positive modulators (spermine, R568) not only amplified CH-induced CaSR upregulation but also intensified CH-induced increases in cell number, cell viability and the proliferation index of PVSMCs. Silencing CaSR with siRNA similarly attenuated the CH-induced enhancement of cell number, cell viability and DNA synthesis in PVSMCs. Neither CH nor downregulation of CaSR with siRNA had an effect on apoptosis in PVSMCs. These results suggest that CaSR mediating excessive proliferation is a new pathogenic mechanism involved in the initiation and progression of distal PVSMCs proliferation under CH conditions.


Subject(s)
Cell Proliferation/physiology , Hypoxia/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Veins/metabolism , Receptors, Calcium-Sensing/metabolism , Adamantane/analogs & derivatives , Adamantane/pharmacology , Animals , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Hypoxia/pathology , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Naphthalenes/pharmacology , Pulmonary Veins/drug effects , Pulmonary Veins/pathology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Up-Regulation/drug effects , Vascular Remodeling/drug effects , Vascular Remodeling/physiology
15.
Circulation ; 140(17): 1409-1425, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31462075

ABSTRACT

BACKGROUND: Bmpr2 (bone morphogenetic protein receptor 2) mutations are critical risk factors for hereditary pulmonary arterial hypertension (PAH) with approximately 20% of carriers developing disease. There is an unmet medical need to understand how environmental factors, such as inflammation, render Bmpr2 mutants susceptible to PAH. Overexpressing 5-LO (5-lipoxygenase) provokes lung inflammation and transient PAH in Bmpr2+/- mice. Accordingly, 5-LO and its metabolite, leukotriene B4, are candidates for the second hit. The purpose of this study was to determine how 5-LO-mediated pulmonary inflammation synergized with phenotypically silent Bmpr2 defects to elicit significant pulmonary vascular disease in rats. METHODS: Monoallelic Bmpr2 mutant rats were generated and found phenotypically normal for up to 1 year of observation. To evaluate whether a second hit would elicit disease, animals were exposed to 5-LO-expressing adenovirus, monocrotaline, SU5416, SU5416 with chronic hypoxia, or chronic hypoxia alone. Bmpr2-mutant hereditary PAH patient samples were assessed for neointimal 5-LO expression. Pulmonary artery endothelial cells with impaired BMPR2 signaling were exposed to increased 5-LO-mediated inflammation and were assessed for phenotypic and transcriptomic changes. RESULTS: Lung inflammation, induced by intratracheal delivery of 5-LO-expressing adenovirus, elicited severe PAH with intimal remodeling in Bmpr2+/- rats but not in their wild-type littermates. Neointimal lesions in the diseased Bmpr2+/- rats gained endogenous 5-LO expression associated with elevated leukotriene B4 biosynthesis. Bmpr2-mutant hereditary PAH patients similarly expressed 5-LO in the neointimal cells. In vitro, BMPR2 deficiency, compounded by 5-LO-mediated inflammation, generated apoptosis-resistant and proliferative pulmonary artery endothelial cells with mesenchymal characteristics. These transformed cells expressed nuclear envelope-localized 5-LO consistent with induced leukotriene B4 production, as well as a transcriptomic signature similar to clinical disease, including upregulated nuclear factor Kappa B subunit (NF-κB), interleukin-6, and transforming growth factor beta (TGF-ß) signaling pathways. The reversal of PAH and vasculopathy in Bmpr2 mutants by TGF-ß antagonism suggests that TGF-ß is critical for neointimal transformation. CONCLUSIONS: In a new 2-hit model of disease, lung inflammation induced severe PAH pathology in Bmpr2+/- rats. Endothelial transformation required the activation of canonical and noncanonical TGF-ß signaling pathways and was characterized by 5-LO nuclear envelope translocation with enhanced leukotriene B4 production. This study offers an explanation of how an environmental injury unleashes the destructive potential of an otherwise silent genetic mutation.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Inflammation/metabolism , Neointima/metabolism , Pulmonary Arterial Hypertension/physiopathology , Animals , Endothelial Cells/metabolism , Hypertension, Pulmonary/physiopathology , Myocytes, Smooth Muscle/metabolism , Pulmonary Arterial Hypertension/genetics , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Rats, Transgenic , Signal Transduction/physiology
16.
Biochimie ; 158: 139-148, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30550855

ABSTRACT

The present study was designed to explore the role of transient receptor potential canonical 3 (TRPC3) in nicotine-induced chronic obstructive pulmonary disease (COPD) and its underlying mechanism. In this study, the expression and localization of α5 nicotinic acetylcholine receptor (α5-nAchR) in lung tissues were determined by western blotting and immunohistochemistry. The quantitative real-time PCR (qRT-PCR) analysis was performed to examine the mRNA expression levels of α5-nAchR and TRPC3 in human airway smooth muscle cells (HASMCs). Cell viability was assessed by CCK-8 assay. Proliferation was detected by cell counting and EdU immunofluorescent staining. Fluorescence calcium imaging was carried out to measure cytosolic Ca2+ ([Ca2+]cyt) concentration. The results showed that the α5-nAchR and TRPC3 expressions were significantly up-regulated in lung tissues of COPD smokers. Nicotine promoted HASMC proliferation, which was accompanied by elevated α5-nAchR and TRPC3 expressions, basal [Ca2+]cyt, store-operated calcium entry (SOCE) and the rate of Mn2+ quenching in HASMCs. Further investigation indicated that nicotine-induced Ca2+ response and TRPC3 up-regulation was reversibly blocked by small interfering RNA (siRNA) suppression of α5-nAChR. The knockdown of TRPC3 blunted Ca2+ response and HASMC proliferation induced by nicotine. In conclusion, nicotine-induced HASMC proliferation was mediated by TRPC3-dependent calcium entry via α5-nAchR, which provided a potential target for treatment of COPD.


Subject(s)
Calcium Signaling/drug effects , Calcium/metabolism , Cell Proliferation/drug effects , Myocytes, Smooth Muscle/metabolism , Nicotine/pharmacology , Receptors, Nicotinic/biosynthesis , Respiratory System/metabolism , TRPC Cation Channels/biosynthesis , Aged , Female , Gene Expression Regulation/drug effects , Humans , Male , Middle Aged , Myocytes, Smooth Muscle/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/therapy , Respiratory System/pathology
17.
Int J Biochem Cell Biol ; 104: 161-170, 2018 11.
Article in English | MEDLINE | ID: mdl-30266526

ABSTRACT

BACKGROUND: This study aimed to investigate the effects of topotecan (TPT) on the hypoxia-induced pulmonary arterial hypertension (PAH) in a rat model, and to explore the underlying mechanism. METHODS: The experiments were carried out in vitro using rat PASMCs and in vivo using a rat model of hypoxia-induced PAH. RESULTS: TPT significantly suppressed the hypoxia-induced upregulation of HIF-1α and TRPC1/4/6 expression both in pulmonary arterial smooth muscle cells (PASMCs) from normal rats and in pulmonary arteries from PAH model rats. Furthermore, TPT effectively inhibited intracellular Ca2+ concentration ([Ca2+]i) change (Ca2+ influx) in PASMCs from both normal rats and PAH model rats. Importantly, TPT treatment significantly inhibited the hypoxia-induced proliferation, migration and a contractile-to-synthetic phenotypic switching of normal rat PASMCs in vitro, where the effect was abrogated by overexpression of TRPC1/4/6. Furthermore, TPT administration potently attenuated the hypoxia-induced PAH-associated pulmonary arteriolar remodeling in PAH model rats, as evidenced by amelioration of elevated hemodynamic parameters, and enhanced right ventricle hypertrophy and wall thickening. CONCLUSION: TPT ameliorates the hypoxia-induced pulmonary vascular remodeling in PAH, and the mechanism is associated with TPT-mediated inhibition of hypoxia-induced upregulation of HIF-1α and TRPC1/4/6 expression, Ca2+ influx, and PASMCs proliferation.


Subject(s)
Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/prevention & control , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , TRPC Cation Channels/antagonists & inhibitors , Topotecan/pharmacology , Animals , Calcium/metabolism , Cell Hypoxia/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cytokines/metabolism , Gene Expression Regulation/drug effects , Hypertension, Pulmonary/metabolism , Male , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phenotype , Rats , Rats, Wistar , Vascular Endothelial Growth Factor A/metabolism , Vascular Remodeling/drug effects
18.
Respir Res ; 19(1): 37, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29499705

ABSTRACT

BACKGROUND: The contribution of airway remodeling in chronic obstructive pulmonary disease (COPD) has been well documented, with airway smooth muscle cell proliferation and migration playing a role in the remodeling process. Here, we aimed to verify the effects of fine particulate matter (PM2.5) on human bronchial smooth muscle cell (HBSMC) migration and to explore the underlying signaling pathways. METHODS: HBSMC apoptosis, proliferation and migration were measured using flow cytometry, cell counting and transwell migration assays, respectively. The role of the hedgehog pathway in cell migration was assessed by western blotting to measure the expression of Sonic hedgehog (Shh), Gli1 and Snail. Furthermore, siRNA was used to knock down Gli1 or Snail expression. RESULTS: PM2.5 induced HBSMC apoptosis in a dose-dependent manner, although certain concentrations of PM2.5 did not induce HBSMC proliferation or apoptosis. Interestingly, cell migration was stimulated by PM2.5 doses far below those that induced apoptosis. Additional experiments revealed that these PM2.5 doses enhanced the expression of Shh, Gli1 and Snail in HBSMCs. Furthermore, PM2.5-induced cell migration and protein expression were enhanced by recombinant Shh and attenuated by cyclopamine. Similar results were obtained by knocking down Gli1 or Snail. CONCLUSIONS: These findings suggest that PM2.5, which may exert its effects through the Shh signaling pathway, is necessary for the migration of HBSMCs. These data define a novel role for PM2.5 in airway remodeling in COPD.


Subject(s)
Bronchi/metabolism , Cell Movement/physiology , Hedgehog Proteins/metabolism , Myocytes, Smooth Muscle/metabolism , Particulate Matter/toxicity , Signal Transduction/physiology , Bronchi/drug effects , Bronchi/pathology , Cell Movement/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Myocytes, Smooth Muscle/drug effects , Signal Transduction/drug effects
19.
Int J Biochem Cell Biol ; 97: 28-35, 2018 04.
Article in English | MEDLINE | ID: mdl-29355755

ABSTRACT

The aim of this study was to investigate the influence of two-pore channels mediated receptor-operated Ca2+ entry on pulmonary arterial smooth muscle cell (PASMC) under hypoxia conditions. PASMCs were separated using the direct adherent culture method. The cultured cells were observed under optic microscope and the phenotypes of cells were identified by immunohistochemistry. The expression of NAADP was examined by ELISA. CaN, TPC1, TPC2 and NFATc3 protein levels were examined using Western blotting. Real-time PCR was utilized to detect the level of TPC1 and TPC2 mRNA. Fluorescent probe technique was used to explore the [Ca2+]i in PASMCs. Proliferation and migration of PASMCs were examined by MTT assay and Transwell, respectively. The results showed that cells displayed a typical "peak-valley" growth pattern and positive for α-actin staining. Expression of NAADP, CaN, NFATc3, TPC1 and TPC2 under PASMCs exposed to hypoxia after 24 h and 48 h were higher than control, however, cells treated with Ned-19 were significantly decreased compared with control. Levels of CaN and NFATc3 protein collected from RPASMCs transfected with TPCs siRNA were observably decreased than scrambled siRNA. Under hypoxia condition for 12 h, 24 h and 48 h, TPC1 and TPC2 mRNA levels were higher in PASMCs compared as control. The [Ca2+]i evoked by hypoxia significantly increased than normoxia group. Nevertheless, the [Ca2+]i of the groups treated with Ned-19 and transfected with TPCs siRNA were markedly lower compared with control. In conclusion, the TPCs influence on function of pulmonary artery smooth muscle cells by mediated Ca2+ Signals under hypoxia condition.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Gene Expression Regulation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Animals , Cell Hypoxia , Male , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Pulmonary Artery/pathology , Rats , Rats, Sprague-Dawley
20.
Cell Physiol Biochem ; 43(3): 986-1002, 2017.
Article in English | MEDLINE | ID: mdl-28957813

ABSTRACT

BACKGROUND/AIMS: The proliferation of human bronchial smooth muscle cells (HBSMCs) is a key pathophysiological component of airway remodeling in chronic obstructive pulmonary disease (COPD) for which pharmacotherapy is limited, and only slight improvements in survival have been achieved in recent decades. Cigarette smoke is a well-recognized risk factor for COPD; however, the pathogenesis of cigarette smoke-induced COPD remains incompletely understood. This study aimed to investigate the mechanisms by which nicotine affects HBSMC proliferation. METHODS: Cell viability was assessed with a CCK-8 assay. Proliferation was measured by cell counting and EdU immunostaining. Fluorescence calcium imaging was performed to measure intracellular Ca2+ concentration ([Ca2+]i). RESULTS: The results showed that nicotine promotes HBSMC proliferation, which is accompanied by elevated store-operated calcium entry (SOCE), receptor-operated calcium entry (ROCE) and basal [Ca2+]i in HBSMCs. Moreover, we also confirmed that canonical transient receptor potential protein 6 (TRPC6) and α7 nicotinic acetylcholine receptor (α7 nAChR) are involved in nicotine-induced upregulation of cell proliferation. Furthermore, we verified that activation of the PI3K/Akt signaling pathway plays a pivotal role in nicotine-enhanced proliferation and calcium influx in HBSMCs. Inhibition of α7 nAChR significantly decreased Akt phosphorylation levels, and LY294002 inhibited the protein expression levels of TRPC6. CONCLUSION: Herein, these data provide compelling evidence that calcium entry via the α7 nAChR-PI3K/Akt-TRPC6 signaling pathway plays an important role in the physiological regulation of airway smooth muscle cell proliferation, representing an important target for augmenting airway remodeling.


Subject(s)
Calcium/metabolism , Cell Proliferation/drug effects , Nicotine/toxicity , TRPC6 Cation Channel/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Cell Survival/drug effects , Cells, Cultured , Chromones/pharmacology , Diglycerides/pharmacology , Humans , Morpholines/pharmacology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Optical Imaging , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction/drug effects , TRPC6 Cation Channel/antagonists & inhibitors , TRPC6 Cation Channel/genetics , Up-Regulation/drug effects , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , alpha7 Nicotinic Acetylcholine Receptor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...