Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chemosphere ; 356: 141952, 2024 May.
Article in English | MEDLINE | ID: mdl-38599329

ABSTRACT

Photo-Fenton-like technology based on H2O2 is considered as an ideal strategy to generate reactive oxygen species (ROS) for antibiotic degradation, but O2 overflow in the process severely limits the utilization efficiency of H2O2. Herein, we fabricate Bi2MoO6 (BMO) photocatalyst modified with Frustrated Lewis pairs (FLPs) as a Fenton catalyst model for enhancing reuse of spilled O2. The FLPs created by the introduction of cerium and oxygen vacancy were found to contribute to regulate the electronic structure of BMO and further improve the acidic and basic properties of photocatalyst surface. More importantly, the frustrated acid and base sites can enhance the H2O2 and O2 interfacial adsorption process and provide an Ce4+-Ov-O2- active site on the surface of Ce-BMO nanosheets, which can promote O2/•O2-/1O2/H2O2 redox cycles to achieve high H2O2 utilization efficiency. Specifically, in the experiment using tetracycline as a photocatalytic degradation object, the degradation activity of Ce-BMO was 2.15 times higher than that of BMO pure phase. Quenching experiments and EPR assays also confirmed that 1O2 and •O2- were the dominant oxidative species. This study systematically reveals the design of Fenton photocatalytic active sites at the atomic scale and provides new insights into constructing FLPs photocatalysts with high H2O2 utilization efficiency.


Subject(s)
Bismuth , Cerium , Hydrogen Peroxide , Photolysis , Hydrogen Peroxide/chemistry , Bismuth/chemistry , Cerium/chemistry , Catalysis , Molybdenum/chemistry , Iron/chemistry , Reactive Oxygen Species/chemistry , Oxidation-Reduction , Oxygen/chemistry
2.
Anal Chim Acta ; 1290: 342202, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246745

ABSTRACT

BACKGROUND: Lanthanide metal-organic frameworks (Ln-MOFs) are a kind of emerging crystalline porous materials with high fluorescence and easy-to-tunable properties, making them ideal for sensing applications. However, current Ln-MOFs based fluorescent probes are primarily single-emissive or fluorescence-quenched, which greatly limited the detection performances such as sensitivity, accuracy and repeatability, thereby hindering their applications in efficient target monitoring and related disease diagnosis. To address these issues, the reasonable design of Ln-MOFs equipped with dual fluorescence emissions and light-up mode is urgently needed for a high-performance biosensor. RESULTS: A dual-emissive europium doped UiO-66 (Eu@UiO-66-NH2-PMA)-based ratiometric fluorescent biosensing platform was constructed for highly sensitive and selective detection of the histidinemia biomarker-histidine (His). Eu@UiO-66-NH2-PMA (pyromellitic acid abbreviated as PMA) was synthesized utilizing a post-synthetic modification method via coordination interactions between the free -COOH of UiO-66-NH2-PMA and Eu3+, which exhibited characteristic peaks of broad ligand emission and sharp Eu3+ emissions simultaneously. Considering that Cu2+ had the excellent fluorescence quenching ability toward Eu3+ and superior affinity with His, it was deliberately introduced into the Eu@UiO-66-NH2-PMA, acting as active sites for target His responsiveness. The Eu@UiO-66-NH2-PMA/Cu2+/His ternary competition system demonstrated a low detection limit of 74 nM, excellent selectivity and good anti-interference capability that allowed for sensitive analysis of His levels in milk and human serum samples. SIGNIFICANCE: Attributing to the superior luminescent properties, good stability and self-calibration capability of Eu@UiO-66-NH2-PMA, the developed ratiometric light-up sensing platform enabled sensitive, selective and credible analysis of His in complex practical samples, which might provide an available tool for food nutrition guideline and diagnostic applications of His related diseases.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Europium , Histidine Ammonia-Lyase/deficiency , Lanthanoid Series Elements , Metal-Organic Frameworks , Phthalic Acids , Humans , Histidine , Biomarkers , Fluorescent Dyes
3.
Nanotechnology ; 34(50)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37725965

ABSTRACT

In this work, an electrochemical sensor based on ion-imprinted polymer/Au nanoparticles/porous biochar (IIP/AuNPs/PBC) composite was proposed for the highly selective and sensitive detection of Pb2+. In this work, poly (thionine) (pTHI) served simultaneously as imprinted polymer and reference probe. It could not only realize the specific detection of Pb2+, but also provide an internal reference signal to eliminate the influence of human and environmental factors on the detection signal and further improve the stability of the sensor. In addition, the AuNPs/PBC composite with large specific surface area, excellent electron transport and electrocatalytic performance could effectively enhance the detection signal as a carrier material. At the same time, the AuNPs on the PBC surface would promote the formation of uniform and stable IIP through Au-S bonds. The synergistic effect between IIP, AuNPs/PBC and ratiometric signal mode gave the Pb2+sensor excellent performance, including a wide linear range (0.1-1000µg l-1), low detection limit (0.03µg l-1, S/N = 3), excellent selectivity and stability. All these results indicate that the proposed sensor could provide a meaningful reference for highly selective detection of heavy metal ions (HMIs).

4.
Chemosphere ; 340: 139728, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37557997

ABSTRACT

The electrochemical technique has been increasingly used for the detection of heavy metal ions in the water system. However, the process for determining the optimum experimental conditions was cumbersome, time-consuming, and unsynchronized, resulting in unsatisfactory detection efficiency. Herein, a new machine learning (ML) strategy combined with BiFeO3/Ti3C2 MXene (BiFeO3/MXene) was used to fabricate a simple but efficient electrochemical Pb2+ sensor. The interconnected BiFeO3/MXene composites prepared by a hydrothermal method possessed an interconnected conductive framework, abundant active sites, and a large surface area, which gave them excellent electronic conductivity and high accumulation of Pb2+. Meanwhile, ML methods such as back-propagation artificial neural network (BPANN) and genetic algorithm (GA) combined with orthogonal experimental design (OED) were used to optimize sensor parameters such as the pH of the supporting electrolyte, the BiFeO3/MXene content, deposition potential, and deposition time. Compared with OED and the one factor at a time (OFAT) methods, the OED-ML method greatly simplified the experimental procedures and improved the electrochemical detection performance. The developed sensor showed superior detection performance for Pb2+ with a detection limit of 0.0001 µg L-1 using the OED-ML method, which was much lower than that of the OED and OFAT methods (0.0003 µg L-1). In addition, the sensor showed good repeatability, reproducibility, stability, and interference capability. The feasibility of the method was verified by detecting Pb2+ in lake samples with recoveries ranging from 98.79% to 101.3%. To our knowledge, the ML strategy was introduced for the first time in an electrochemical sensor for Pb2+ detection, which proved the feasibility and practicality of ML.


Subject(s)
Lead , Titanium , Reproducibility of Results , Electrochemical Techniques , Machine Learning
5.
Molecules ; 28(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513225

ABSTRACT

Mercuric ion (Hg2+) in aqueous media is extremely toxic to the environment and organisms. Therefore, the ultra-trace electrochemical determination of Hg2+ in the environment is of critical importance. In this work, a new electrochemical Hg2+ sensing platform based on porous activated carbon (BC/Cu2O) modified with cuprous oxide was developed using a simple impregnation pyrolysis method. Differential pulse anodic stripping voltammetry (DPASV) was used to investigate the sensing capability of the BC/Cu2O electrode towards Hg2+. Due to the excellent conductivity and large specific surface area of BC, and the excellent catalytic activity of Cu2O nanoparticles, the prepared BC/Cu2O electrode exhibited excellent electrochemical activity. The high sensitivity of the proposed system resulted in a low detection limit of 0.3 ng·L-1 and a wide linear response in the ranges from 1.0 ng·L-1 to 1.0 mg·L-1. In addition, this sensor was found to have good accuracy, acceptable precision, and reproducibility. All of these results show that the BC/Cu2O composite is a promising material for Hg2+ electrochemical detection.

6.
Molecules ; 28(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37050025

ABSTRACT

In this work, TiO2-MXene/poly (3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) composite was utilized as an electrode material for the sensitive electrochemical detection of baicalein. The in-situ growth of TiO2 nanoparticles on the surface of MXene nanosheets can effectively prevent their aggregation, thus presenting a significantly large specific surface area and abundant active sites. However, the partial oxidation of MXene after calcination could reduce its conductivity. To address this issue, herein, PEDOT:PSS films were introduced to disperse the TiO2-MXene materials. The uniform and dense films of PEDOT:PSS not only improved the conductivity and dispersion of TiO2-MXene but also enhanced its stability and electrocatalytic activity. With the advantages of a composite material, TiO2-MXene/PEDOT:PSS as an electrode material demonstrated excellent electrochemical sensing ability for baicalein determination, with a wide linear response ranging from 0.007 to 10.0 µM and a lower limit of detection of 2.33 nM. Furthermore, the prepared sensor displayed good repeatability, reproducibility, stability and selectivity, and presented satisfactory results for the determination of baicalein in human urine sample analysis.


Subject(s)
Flavanones , Humans , Reproducibility of Results , Flavanones/urine
7.
Mikrochim Acta ; 190(4): 146, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36943487

ABSTRACT

Heterostructured TiO2@MXene rich in oxygen vacancies defects (VO-TiO2@MXene) has been developed to construct an electrochemical sensing platform for imidacloprid (IMI) determination. For the material design, TiO2 nanoparticles were firstly in situ grown on MXene and used as a scaffolding to prevent the stack of MXene nanosheets. The obtained TiO2@MXene heterostructure displays excellent layered structure and large specific surface area. After that, electrochemical activation is utilized to treat TiO2@MXene, which greatly increases the concentration of surface oxygen vacancies (VOs), thereby remarkably enhancing the conductivity and adsorption capacity of the composite. Accordingly, the prepared VO-TiO2@MXene displays excellent electrocatalytic activity toward the reduction of IMI. Under optimum conditions, cyclic voltammetry and linear sweep voltammetry techniques were utilized to investigate the electrochemical behavior of IMI at the VO-TiO2@MXene/GCE. The proposed sensor based on VO-TiO2@MXene presents an obvious reduction peak at -1.05 V(vs. Hg|Hg2Cl2) with two linear ranges from 0.07 - 10.0 µM and 10.0 - 70.0 µM with a detection limit of 23.3 nM (S/N= 3). Furthermore, the sensor provides a reliable result for detecting IMI in fruit and vegetable samples with a recovery of 97.9-103% and RSD≤ 4.3%. A sensitive electrochemical sensing platform was reported for imidacloprid (IMI) determination based on heterostructured TiO2@MXene rich in oxygen vacancy defects.


Subject(s)
Oxygen , Vegetables , Fruit , Electrochemical Techniques/methods
8.
Molecules ; 28(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36985408

ABSTRACT

Acetaminophen (AC) is one of the most common over-the-counter drugs, and its pollutant in groundwater has attracted more attention due to its serious risk to human health. Currently, the research on AC is mainly focused on its detection, but few are concerned about its removal. In this work, for the first time, nitrogen-doped Soulangeana sepals derived biochar/ß-cyclodextrin-Metal-organic frameworks (N-SC/ß-CD-MOFs) composite was proposed for the simultaneous efficient removal and detection of AC. N-SC/ß-CD-MOFs combined the properties of host-guest recognition of ß-CD-MOFs and porous structure, high porosity, and large surface area of N-SC. Their synergies endowed N-SC/ß-CD-MOFs with a high adsorption capacity toward AC, which was up to 66.43 mg/g. The adsorption type of AC on the surface of N-SC/ß-CD-MOFs conformed to the Langmuir adsorption model, and the study of the adsorption mechanism showed that AC adsorption on N-SC was mainly achieved through hydrogen bonding. In addition, the high conductivity, large specific surface area and abundant active sites of N-SC/ß-CD-MOFs were of great significance to the high-performance detection of AC. Accordingly, the sensor prepared with N-SC/ß-CD-MOFs presented a wide linear range (1.0-30.0 µM) and a low limit of detection of 0.3 nM (S/N = 3). These excellent performances demonstrate that N-SC/ß-CD-MOFs could act as an efficient dual-functional material for the detection and removal of AC.


Subject(s)
Metal-Organic Frameworks , Nitrogen , Humans , Porosity , Acetaminophen , Metal-Organic Frameworks/chemistry , Adsorption
9.
Mikrochim Acta ; 190(3): 98, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36806988

ABSTRACT

Graphdiyne (GDY) has attracted a lot of interest in electrochemical sensing application with the advantages of a large conjugation system, porous structure, and high structure defects. Herein, to further improve the sensing effect of GDY, conductive MWCNTs were chosen as the signal accelerator. To get a stable composite material, polydopamine (PDA) was employed as connecting bridge between GDY and MWCNTs-NH2, where DA was firstly polymerized onto GDY, followed by covalently linking MWCNTs-NH2 with PDA through Michael-type reaction. The formed GDY@PDA/MWCNTs-NH2 composite was then explored as an electrochemical sensor for benomyl (Ben) determination. GDY assists the adsorption and accumulation of Ben molecules to the sensing surface, while MWCNTs-NH2 can enhance the electrical conductivity and electrocatalytic activity, all of which contributing to the significantly improved performance. The proposed sensor displays an obvious oxidation peak at 0.72 V (vs. Hg|Hg2Cl2) and reveals a wide linear range from 0.007 to 10.0 µM and a low limit of detection (LOD) of 1.8 nM (S/N = 3) toward Ben detection. In addition, the sensor shows high stability, repeatability, reproducibility, and selectivity. The feasibility of this sensor was demonstrated by detecting Ben in apple and cucumber samples with a recovery of 94-106% and relative standard deviations (RSDs) less than 2.3% (n = 5). A sensitive electrochemical sensing platform was reported for benomyl (Ben) determination based on a highly stable GDY@PDA/MWCNTs-NH2 composite.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Electrochemical Techniques , Benomyl , Reproducibility of Results
10.
Molecules ; 27(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296450

ABSTRACT

In this work, a two-dimensional leaf-like framework-L embedded electrochemically reduced graphene oxide (ERGO@ZIF-L) was proposed as an outstanding electrode material for the sensitive electrochemical sensing of benomyl (BM). ZIF-L is surrounded by ERGO, which could effectively ensure the stability and dispersion of ZIF-L. With this unique combination, the prepared ERGO@ZIF-L displayed excellent synergistic characteristics with a large surface area, excellent conductivity, plentiful active sites, and high electrocatalytic properties, thus endowing it with high sensitivity for BM determination. The experimental parameters, such as solution pH, material volume, and accumulation time, were optimized. Under optimal conditions, the BM sensor showed a wide linear range (0.009-10.0 µM) and low-limit detection (3.0 nM). Moreover, the sensor displayed excellent stability, repeatability, and reproducibility, and good anti-interference capability. The method was successfully applied to detect BM in real-world samples.


Subject(s)
Benomyl , Graphite , Electrochemical Techniques/methods , Reproducibility of Results , Graphite/chemistry , Electrodes
11.
Nanotechnology ; 33(44)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35878583

ABSTRACT

Herein, a facile ratiometric electrochemical method was developed for sensitive sensing of riboflavin (RF) based on hierarchical porous biochar (HPB) modified electrode. In this sensing system, the reference paracetamol (PA) was directly added into electrolyte solution without the requirement of complex immobilization process. HPB derived from KOH-activated Soulangeana sepals displays hierarchical porous structure, high specific surface area and rich oxygen-containing functional groups, which is favorable for RF adsorption and enrichment. Besides, the excellent electronic conductivity and superior electrocatalytic activity of HPB can effectively promote the electrooxidation of RF. Moreover, the dual-signal strategy greatly improves the reproducibility and reliability of electrochemical detection. Based on the proposed ratiometric sensing platform, the sensor exhibits a wider linear range of 0.0007-10µM and a lower limit of detection of 0.2 nM. The method also presents good selectivity and has been applied to the determination of RF in milk samples with satisfactory results.


Subject(s)
Electrochemical Techniques , Riboflavin , Carbon/chemistry , Charcoal , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Porosity , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...