Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37930027

ABSTRACT

The gut microbiome has been regarded as one of the fundamental determinants regulating human health, and multi-omics data profiling has been increasingly utilized to bolster the deep understanding of this complex system. However, stemming from cost or other constraints, the integration of multi-omics often suffers from incomplete views, which poses a great challenge for the comprehensive analysis. In this work, a novel deep model named Incomplete Multi-Omics Variational Neural Networks (IMOVNN) is proposed for incomplete data integration, disease prediction application and biomarker identification. Benefiting from the information bottleneck and the marginal-to-joint distribution integration mechanism, the IMOVNN can learn the marginal latent representation of each individual omics and the joint latent representation for better disease prediction. Moreover, owing to the feature-selective layer predicated upon the concrete distribution, the model is interpretable and can identify the most relevant features. Experiments on inflammatory bowel disease multi-omics datasets demonstrate that our method outperforms several state-of-the-art methods for disease prediction. In addition, IMOVNN has identified significant biomarkers from multi-omics data sources.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Humans , Multiomics , Biomarkers , Inflammatory Bowel Diseases/genetics , Neural Networks, Computer
2.
Int J Pharm ; 623: 121952, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35753534

ABSTRACT

The main strategy of tissue repair and regeneration focuses on the application of mesenchymal stem cells and cell-based nanoparticles, but there are still multiple challenges that may have negative impacts on human safety and therapeutic efficacy. Cell-free nanotechnology can effectively overcome these obstacles and limitations. Mesenchymal stem cell (MSC)-derived natural small extracellular vesicles (sEVs) represent ideal nanotherapeutics due to their low immunogenicity and lack of tumorigenicity. Here, sEVs harvested from Wharton's jelly mesenchymal stem cells (WJMSCs) were identified. In vitro results showed that WJMSC-sEVs efficiently entered chondrocytes in the osteoarthritis (OA) model, further promoted chondrocyte migration and proliferation and modulated immune reactivity. In vivo, WJMSC-sEVs notably promoted chondrogenesis, which was consistent with the effect of WJMSCs. RNA sequencing results revealed that sEV-microRNA-regulated biocircuits can significantly contribute to the treatment of OA, such as by promoting the activation of the calcium signaling pathway, ECM-receptor interaction pathway and NOTCH signaling pathway. In particular, let-7e-5p, which is found in WJMSC-sEVs, was shown to be a potential core molecule for promoting cartilage regeneration by regulating the levels of STAT3 and IGF1R. Our findings suggest that WJMSC-sEV-induced chondrogenesis is a promising innovative and feasible cell-free nanotherapy for OA treatment.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , Nanoparticles , Wharton Jelly , Cartilage , Humans , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism
3.
Int J Nanomedicine ; 16: 8185-8202, 2021.
Article in English | MEDLINE | ID: mdl-34938076

ABSTRACT

INTRODUCTION: Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and their small extracellular vesicles (hUC-MSC-sEVs) have shown attractive prospects applying in regenerative medicine. This study aimed to compare the therapeutic effects of two agents on osteoarthritis (OA) and investigate underlying mechanism using proteomics. METHODS: In vitro, the proliferation and migration abilities of chondrocytes treated with hUC-MSCs or hUC-MSC-sEVs were detected by Cell Counting Kit-8 assay and scratch wound assay. In vivo, hUC-MSCs (a single dose of 5 × 105) or hUC-MSC-sEVs (30 µg/time) were injected into the knee joints of anterior cruciate ligament transection-induced OA model. Hematoxylin and eosin, Safranin O/Fast Green staining were used to observe cartilage degeneration. The levels of cartilage matrix metabolic molecules (Collagen II, MMP13 and ADAMTS5) and macrophage polarization markers (CD14, IL-1ß, IL-10 and CD206) were assessed by immunohistochemistry. Finally, proteomics analysis was performed to characterize the proteinaceous contents of two agents. RESULTS: In vitro data showed that hUC-MSC-sEVs were taken up by chondrocytes. A total of 15 µg/mL of sEVs show the greatest proliferative and migratory capacities among all groups. In the animal study, hUC-MSCs and hUC-MSC-sEVs alleviated cartilage damage. This effect was mediated via maintaining cartilage homeostasis, as was confirmed by upregulation of the COL II and downregulation of the MMP13 and ADAMTS5. Moreover, the M1 macrophage markers (CD14) were significantly reduced, while the M2 macrophage markers (CD206 and IL-10) were increased in the hUC-MSCs and hUC-MSC-sEVs relative to the untreated group. Mechanistically, we found that many proteins connected to cartilage repair were more abundant in sEVs. Notably, compared to hUC-MSCs, the upregulated proteins in sEVs were mostly involved in the regulation of immune effector process, extracellular matrix organization, PI3K-AKT signaling pathways, and Rap1 signaling pathway. CONCLUSION: Our study indicated that hUC-MSC-sEVs protect cartilage from damage and many cartilage repair-related proteins are probably involved in the restoration process. These data suggest the promising potential of hUC-MSC-sEVs as a therapeutic agent for OA.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis , Animals , Humans , Osteoarthritis/therapy , Phosphatidylinositol 3-Kinases , Umbilical Cord
4.
Stem Cell Res Ther ; 12(1): 263, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33941279

ABSTRACT

BACKGROUND: Small extracellular vesicles (sEVs) with genetic information secreted by cells play a crucial role in the cellular microenvironment. In this study, our purpose is to explore the characteristics of the small extracellular vesicles of human adipose-derived mesenchymal stromal cells (hADMSC-sEVs) and studied the role of hADMSC-sEVs in improving the survival rate of grafted fat. METHODS: In the present study, we used the transmission electron microscopy, nano-tracking analysis, nanoflow surface protein analysis, and zeta potential value to identify sEVs. SEVs' trajectory was traced dynamically to verify whether hADMSC-sEVs can be internalized into human umbilical vein endothelial cells (HUVECs) in vitro at different times. The angiogenic property of hADMSC-sEVs was observed by measuring the volume, weight, and histological analysis of the grafted fats in nude mouse models. RESULTS: Our research showed that the hADMSC-sEVs were sEVs with double-layer membrane structure and the diameter of which is within 30-150 nm. hADMSC-sEVs exert biological influence mainly through internalization into cells. Compared with the control group, the hADMSC-sEVs group had a significantly higher survival rate of grafted fat, morphological integrity, and a lower degree of inflammation and fibrosis. And immunohistochemistry showed that hADMSC-sEVs significantly increased the neovascularisation and the expression of CD34, VEGFR2, and Ki-67 in the graft tissue. CONCLUSIONS: As a potential nanomaterial, hADMSC-sEVs have been explored in the field of cell-free application of stem cell technology. hADMSC-sEVs promoted the survival of grafted fats by promoting the formation of new blood vessels, which is another promising progress in the field of regenerative medicine. We believe that hADMSC-sEVs will have a broad application prospect in the field of regenerative medicine in the future.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Fibrosis , Graft Survival , Human Umbilical Vein Endothelial Cells , Humans
5.
Stem Cell Res Ther ; 12(1): 179, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712078

ABSTRACT

Radiation-induced skin injury (RISI) is one of the common serious side effects of radiotherapy (RT) for patients with malignant tumors. Mesenchymal stem cells (MSCs) are applied to RISI repair in some clinical cases series except some traditional options. Though direct replacement of damaged cells may be achieved through differentiation capacity of MSCs, more recent data indicate that various cytokines and chemokines secreted by MSCs are involved in synergetic therapy of RISI by anti-inflammatory, immunomodulation, antioxidant, revascularization, and anti-apoptotic activity. In this paper, we not only discussed different sources of MSCs on the treatment of RISI both in preclinical studies and clinical trials, but also summarized the applications and mechanisms of MSCs in other related regenerative fields.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Radiation Injuries , Cell Differentiation , Humans , Immunomodulation , Radiation Injuries/therapy
6.
Stem Cell Res Ther ; 12(1): 23, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33413617

ABSTRACT

BACKGROUND: Mesenchymal stem cell-based acellular therapies have been widely exploited in managing hypertrophic scars. However, low maintenance dose and transitory therapeutic effects during topical medication remain a thorny issue. Herein, this study aimed to optimize the curative effect of adipose-derived stem cell conditioned medium (ADSC-CM) in the prevention of hypertrophic scarring. METHODS: In the present study, ADSC-CM was concentrated via the freeze-drying procedure. The efficacy of different dose groups (CM, CM5, CM10) was conducted on the proliferation, apoptosis, and α-smooth muscle actin (α-SMA) expression of human keloid fibroblasts (HKFs) in vitro. Incorporation of adipose-derived stem cell concentrated conditioned medium (ADSCC-CM) into polysaccharide hydrogel was investigated in rabbit ear, in vivo. Haematoxylin-eosin (H&E) and Masson's trichrome staining were performed for the evaluation of scar hyperplasia. RESULTS: We noted that ADSCC-CM could downregulate the α-SMA expression of HKFs in a dose-dependent manner. In the rabbit ear model, the scar hyperplasia in the medium-dose group (CM5) and high-dose group (CM10) was inhibited with reduced scar elevation index (SEI) under 4 months of observation. It is noteworthy that the union of CM5 and polysaccharide hydrogel (CM5+H) yielded the best preventive effect on scar hyperplasia. Briefly, melanin, height, vascularity, and pliability in the CM5+H group were better than those of the control group. Collagen was evenly distributed, and skin appendages could be regenerated. CONCLUSIONS: Altogether, ADSCC-CM can downregulate the expression of α-SMA due to its anti-fibrosis effect and promote the rearrangement of collagen fibres, which is integral to scar precaution. The in situ cross bonding of ADSCC-CM and polysaccharide hydrogel could remarkably enhance the therapeutic outcomes in inhibiting scar proliferation. Hence, the alliance of ADSCC-CM and hydrogel may become a potential alternative in hypertrophic scar prophylaxis.


Subject(s)
Cicatrix, Hypertrophic , Animals , Cicatrix, Hypertrophic/pathology , Cicatrix, Hypertrophic/prevention & control , Culture Media, Conditioned/pharmacology , Fibroblasts/pathology , Hydrogels , Polysaccharides , Rabbits , Stem Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...