Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Int J Biol Macromol ; : 132137, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734350

ABSTRACT

The preparation and use of gelatins from fish by-products have attracted much attention in the field of food science. Herein, four types of tilapia head gelatins were extracted and characterized: hot water-pretreated gelatin (HWG), acetic acid-pretreated gelatin (AAG), sodium hydroxide-pretreated gelatin (SHG), and pepsin enzyme-pretreated gelatin (PEG). The gel strength values followed the order: PEG (74 ±â€¯1 Bloom) > AAG (66 ±â€¯1) > HWG (59 ±â€¯1) > SHG (34 ±â€¯1). The foaming properties, fish oil emulsion viscosity, emulsion activity, and emulsion stabilization ability followed this order: PEG > HWG ≥ AAG > SHG. The effect mechanisms of extraction methods and gelatin concentrations on the emulsion stability involved the interfacial tension, emulsion viscosity, and fat-binding capacity. This work provided important knowledge for analyzing the relations between the structure and function of gelatin. It also provided a high-value application method of fish wastes.

2.
Biosens Bioelectron ; 257: 116209, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640795

ABSTRACT

Early diagnosis of gastrointestinal (GI) diseases is important to effectively prevent carcinogenesis. Capsule endoscopy (CE) can address the pain caused by wired endoscopy in GI diagnosis. However, existing CE approaches have difficulty effectively diagnosing lesions that do not exhibit obvious morphological changes. In addition, the current CE cannot achieve wireless energy supply and attitude control at the same time. Here, we successfully developed a novel near-infrared fluorescence capsule endoscopy (NIFCE) that can stimulate and capture near-infrared (NIR) fluorescence images to specifically identify subtle mucosal microlesions and submucosal lesions while capturing conventional white light (WL) images to detect lesions with significant morphological changes. Furthermore, we constructed the first synergetic system that simultaneously enables multi-attitude control in NIFCE and supplies long-term power, thus addressing the issue of excessive power consumption caused by the NIFCE emitting near-infrared light (NIRL). We performed in vivo experiments to verify that the NIFCE can specifically "light up" tumors while sparing normal tissues by synergizing with probes actively aggregated in tumors, thus realizing specific detection and penetration. The prototype NIFCE system represents a significant step forward in the field of CE and shows great potential in efficiently achieving early targeted diagnosis of various GI diseases.


Subject(s)
Capsule Endoscopy , Capsule Endoscopy/methods , Humans , Animals , Infrared Rays , Biosensing Techniques/methods , Mice , Equipment Design , Optical Imaging/methods , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/diagnostic imaging , Gastrointestinal Diseases/pathology , Fluorescence
3.
Int J Biol Macromol ; 267(Pt 2): 131521, 2024 May.
Article in English | MEDLINE | ID: mdl-38608976

ABSTRACT

Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower ß-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher ß-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.


Subject(s)
Emulsions , Fish Oils , Galactans , Mannans , Plant Gums , Polysaccharides, Bacterial , Solubility , Soybean Proteins , Mannans/chemistry , Polysaccharides, Bacterial/chemistry , Plant Gums/chemistry , Emulsions/chemistry , Soybean Proteins/chemistry , Galactans/chemistry , Fish Oils/chemistry , Anions/chemistry
4.
J Food Sci ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38591339

ABSTRACT

The simulated digestion and fermentation characteristics in vitro of exopolysaccharide (EPS) of Levilactobacillus brevis M-10 were studied to evaluate its postbiotic properties. The simulated digestion results showed that EPS could not be degraded in saliva but could be very slightly degraded in gastric juice and could be degraded in intestinal juice. The results of simulated fermentation demonstrated that EPS could lower the intestine pH and be utilized by gut microbes to produce short-chain fatty acids such as propionic acid and butyric acid. Meanwhile, EPS significantly raised the diversity of human gut microbiota, and the relative abundances of Phascolarctobacterium were significantly increased, whereas Fusobacterium and Morganella significantly decreased. In conclusion, EPS from L. brevis M-10 was a good postbiotic as inulin. This was the first report about EPS as the postbiotic of L. brevis M-10 screened from broomcorn millet sour porridge in northwestern Shanxi Province, China.

5.
Int J Biol Macromol ; 268(Pt 1): 131921, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679265

ABSTRACT

In order to load fish oil for potential encapsulation of fat-soluble functional active substances, fish oil-loaded multicore submillimeter-sized capsules were prepared with a combination method of three strategies (monoaxial electrospraying, chitosan-tripolyphosphate ionotropic gelation, and Tween blending). The chitosan-tripolyphosphate/Tween (20, 40, 60, and 80) capsules had smaller and evener fish oil cores than the chitosan-tripolyphosphate capsules, which resulted from that Tween addition induced smaller and evener fish oil droplets in the emulsions. Tween addition decreased the water contents from 56.6 % to 35.0 %-43.4 %, increased the loading capacities from 10.4 % to 12.7 %-17.2 %, and increased encapsulation efficiencies from 97.4 % to 97.8 %-99.1 %. In addition, Tween addition also decreased the highest peroxide values from 417 meq/kg oil to 173-262 meq/kg oil. These properties' changes might result from the structural differences between the chitosan-tripolyphosphate and chitosan-tripolyphosphate/Tween capsules. All the results suggested that the obtained chitosan-tripolyphosphate/Tween capsules are promising carriers for fish oil encapsulation. This work also provided useful knowledge to understand the preparation, structural, and physicochemical properties of the chitosan-tripolyphosphate capsules.

6.
J Chem Phys ; 160(10)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38477337

ABSTRACT

We combine on-the-fly trajectory surface hopping simulations and the doorway-window representation of nonlinear optical response functions to create an efficient protocol for the evaluation of time- and frequency-resolved fluorescence (TFRF) spectra and anisotropies of the realistic polyatomic systems. This approach gives the effective description of the proper (e.g., experimental) pulse envelopes, laser field polarizations, and the proper orientational averaging of TFRF signals directly from the well-established on-the-fly nonadiabatic dynamic simulations without extra computational cost. To discuss the implementation details of the developed protocol, we chose cis-azobenzene as a prototype to simulate the time evolution of the TFRF spectra governed by its nonadiabatic dynamics. The results show that the TFRF is determined by the interplay of several key factors, i.e., decays of excited-state populations, evolution of the transition dipole moments along with the dynamic propagation, and scaling factor of the TFRF signals associated with the cube of emission frequency. This work not only provides an efficient and effective approach to simulate the TFRF and anisotropies of realistic polyatomic systems but also discusses the important relationship between the TFRF signals and the underlining nonadiabatic dynamics.

7.
Talanta ; 273: 125938, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38503125

ABSTRACT

The expression levels of microRNA (miRNA) vary significantly in correlation with the occurrence and progression of cancer, making them valuable biomarkers for cancer diagnosis. However, their quantitative detection faces challenges due to the high sequence homology, low abundance and small size. In this work, we established a strand displacement amplification (SDA) approach based on miRNA-triggered structural "Lock" nucleic acid ("Lock" DNA), coupled with the CRISPR/Cas12a system, for detecting miRNA-21 in breast cancer cells. The "Lock" DNA freed the CRISPR-derived RNA (crRNA) from the dependence on the target sequence and greatly facilitated the extended detection of different miRNAs. Moreover, the CRISPR/Cas12a system provided excellent amplification ability and specificity. The designed biosensor achieved high sensitivity detection of miRNA-21 with a limit of detection (LOD) of 28.8 aM. In particular, the biosensor could distinguish breast cancer cells from other cancer cells through intracellular imaging. With its straightforward sequence design and ease of use, the Lock-Cas12a biosensor offers significant advantages for cell imaging and early clinical diagnosis.


Subject(s)
Biosensing Techniques , MicroRNAs , Neoplasms , Nucleic Acids , MicroRNAs/genetics , CRISPR-Cas Systems , Diagnostic Imaging , Limit of Detection
8.
NPJ Sci Food ; 8(1): 9, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38307908

ABSTRACT

The effects of gelatin type (porcine skin gelatin, PSG; bovine skin gelatin, BSG; fish gelatin, FG; or cold-water fish skin gelatin, CFG) and concentration on the preparation and properties of fish oil powders were investigated in this work. The oil powders were prepared using the combination method of gelatin-sodium hexametaphosphate complex coacervation with starch sodium octenyl succinate (SSOS)-aided freeze-drying. Compared with the other gelatins, CFG-with an unobvious isoelectric point, a lower molecular weight, more hydrogen bonds, and longer gel formation time-could not form complex coacervates, which are necessary to prepare oil powders. For oil powders obtained from the other gelatins, gelatin type and concentration did not have obvious effects on microscale morphologies; they did, however, have significant effects on physicochemical properties. The highest peroxide values of the oil powders were mainly dependent on the gelatins, expressed in the following manner: PSG (153 ± 5 - 168 ± 3 meq/Kg oil) < BSG (176 ± 5 - 188 ± 1 meq/Kg oil) < FG (196 ± 11 - 201 ± 22 meq/Kg oil). Acidic and neutral pH could not dissolve the complex coacervates. However, the oil powders could be quickly dissolved to form emulsion droplets in the gastric phase, and that SSOS increased coacervate stability and promoted oil digestion during the in vitro gastrointestinal process. In sum, this study contributes fundamental information to understanding the development of fish oil solid encapsulation preparations.

9.
J Chem Phys ; 159(22)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38063228

ABSTRACT

Singlet fission (SF) is a very significant photophysical phenomenon and possesses potential applications. In this work, we try to give a rather detailed theoretical investigation of the SF process in the stacked polyacene dimer by combining the high-level quantum chemistry calculations and the quantum dynamics simulations based on the tensor network method. Starting with the construction of the linear vibronic coupling model, we explore the pure electronic dynamics and the vibronic dynamics in the SF processes. The role of vibrational modes in nonadiabatic dynamics is addressed. The results show that the super-exchange mechanism mediated by the charge-transfer state is found in both pure electronic dynamics and the nonadiabatic dynamics. Particularly the vibrational modes with the frequencies resonance with the adiabatic energy gap play very import roles in the SF dynamics. This work not only provides a deep and detailed understanding of the SF process but also verifies the efficiency of the tensor network method with the train structure that can serve as the reference dynamics method to explore the dynamics behaviors of complex systems.

10.
Anal Chem ; 95(48): 17708-17715, 2023 12 05.
Article in English | MEDLINE | ID: mdl-38000080

ABSTRACT

MicroRNAs (miRNAs), a class of small molecules with important regulatory functions, have been widely used in the field of biosensing as biomarkers for the early diagnosis of various diseases. Therefore, it is crucial to develop an miRNA detection platform with high sensitivity and specificity. Here, we have designed a CRISPR/Cas13-based enzymatic cyclic amplification system and regarded the magnetic upconversion nanoparticles (MUCNPs) as a biosensor of outputting the detection signal for the highly sensitive and high-fidelity detection of miRNAs. MUCNPs were composed of UCNPs (fluorescence donors) and Fe3O4@AuNPs (fluorescence acceptors) through double-stranded DNA hybrid coupling. The target miRNA acted as an activator, which could activate the trans-cleavage activity of Cas13a to the well-designed Trigger containing two uracil ribonucleotides (rU) in its loop and trigger a strand displacement reaction to generate a large amount of single-stranded DNA, resulting in the release of the UCNPs from MUCNPs. Benefiting from the high fidelity and high selectivity of CRISPR/Cas13a, the great effect of triggered enzymatic cycle amplification, and the high-intensity luminescent signal of MUCNPs, this method possessed miRNA detection capability with high sensitivity and specificity even in the complex environment with 10% fetal bovine serum (FBS) and a serum sample. Meanwhile, the detection limit could be as low as 83.2 fM. In addition, this method effectively reduced the effect of photobleaching and maintained high stability, which was expected to achieve efficient and sensitive miRNA detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , MicroRNAs/genetics , Gold , DNA , DNA, Single-Stranded , Biosensing Techniques/methods , Limit of Detection
11.
J Phys Chem Lett ; 14(29): 6542-6549, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37450883

ABSTRACT

The impact of mode-specific vibrational excitations on initial-preparation conditions was studied by examining the excited-state population decay rates in the nonadiabatic dynamics of methyl nitrate (CH3ONO2). In particular, exciting a few specific modes by adding a single quantum of energy clearly decelerated the nonadiabatic dynamics population decay rates. The underlying reason for this slower population decay was explained by analyzing the profiles of the excited-state potential energy surfaces in the Franck-Condon regions and the topology of the S1/S0 conical intersection. This study not only provides physical insights into the key mechanisms controlling nonadiabatic dynamics but also shows the possibility of controlling nonadiabatic dynamics via mode-specific vibrational excitations.

12.
Thorac Cancer ; 14(21): 2018-2025, 2023 07.
Article in English | MEDLINE | ID: mdl-37287397

ABSTRACT

BACKGROUND: There have been reports of increased glutamate pyruvate transaminase 2 (GPT2) expression in certain cancers including breast cancer. Although the role of GPT2 as a metabolic enzyme is well understood in breast cancer progression, little is known about the other roles of GPT2, especially exosomal GPT2. METHODS: BT549 and BT474 Cells were cultured and their exosomes were isolated by using ultracentrifugation. Cells migrated through the membrane were stained with crystal violet, and then were observed by microscope. Total RNA was extracted from culture cells and transcribed into cDNA, quantitative real-time RT-PCR was used to detect mRNA expression of ICAM1, VCAM1, and MMP9 using SYBR Green qPCR Mix with a 7500 Fast Real-time PCR system. Western blot was used to detect the gene expression of p-lkBa and TSG101 and GPT2 in breast cancer cells. Immunohistochemistry was used to detect the protein expression of GPT2 and BTRC in cancer cells, animal models loaded with metastasis breast cancer cells were established via tail vein injections. Interaction between GPT2 and BTRC in breast cancer cells was investigated via Co-immunoprecipitation. RESULTS: GPT2 was up-regulated in TNBC. Exosomes were isolated effectively from TNBC cells, and confirmed that GPT2 was overexpressed inexosomes. QRT-PCR showed that mRNA expression levels of ICAM1, VCAM1, and MMP9 in TNBC were high. Exosomal GPT2 derived from TNBC enhanced migration and invasion of breast cancer via in vitro cell experiment and in vivo animal model experiment. Exosomal GPT2 binds with BTRC to degrade p-lkBa, and improved metastasis of breast cancer cells. CONCLUSION: We demonstrated that GPT2 was upregulated in TNBC as well as in exosomes derived from triple-negative breast cancer (TNBC) cells. GPT2 expression was associated with the malignancy of breast cancer and promoted metastasis of breast cancer cells. Moreover, exosomal GPT2 derived from TNBC cells was verified to increase the capacity of breast cancer cells to metastasize through activating beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC). This suggested that exosomal GPT2 may be useful for breast cancer patients as a potential biomarker and treatment target.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Matrix Metalloproteinase 9 , Cell Line, Tumor , Biomarkers , RNA, Messenger , Cell Proliferation/genetics , Transaminases
13.
Food Chem ; 423: 136265, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37167667

ABSTRACT

Gelatin has long been used as an encapsulant agent in the pharmaceutical and biomedical industries because of its low cost, wide availability, biocompatibility, and degradability. However, the exploitation of gelatin for nanodelivery application is not fully achieved in the functional food filed. In this review article, we highlight the latest work being performed for gelatin-based nanocarriers, including polyelectrolyte complexes, nanoemulsions, nanoliposomes, nanogels, and nanofibers. Specifically, we discuss the applications and challenges of these nanocarriers for stabilization and controlled release of bioactive compounds. To achieve better efficacy, gelatin is frequently used in combination with other biomaterials such as polysaccharides. The fabrication and synergistic effects of the newly developed gelatin composite nanocarriers are also present.


Subject(s)
Functional Food , Gelatin , Nanoparticle Drug Delivery System , Biocompatible Materials
14.
Food Chem X ; 17: 100590, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36845465

ABSTRACT

Herein, pH-cycle method was explored to prepare curcumin-encapsulated hydrophilic bovine bone gelatin (BBG/Cur) nanoparticle and then the obtained nanoparticle was applied to stabilize fish oil-loaded Pickering emulsion. The nanoparticle had a high encapsulation efficiency (93.9 ± 0.5 %) and loading capacity (9.4 ± 0.1 %) for curcumin. The nanoparticle-stabilized emulsion had higher emulsifying activity index (25.1 ± 0.9 m2/g) and lower emulsifying stability index (161.5 ± 18.8 min) than BBG-stabilized emulsion. The pH affected the initial droplet sizes and creaming index values of the Pickering emulsions: pH 11.0 < pH 5.0 ≈ pH 7.0 ≈ pH 9.0 < pH 3.0. Curcumin provided obvious antioxidant effect for the emulsions, which was also dependent on pH. The work suggested pH-cycle method could be used to prepare hydrophobic antioxidant-encapsulated hydrophilic protein nanoparticle. It also provided basic information on the development of protein nanoparticles for Pickering emulsion stabilization.

15.
PLoS One ; 18(2): e0276427, 2023.
Article in English | MEDLINE | ID: mdl-36821537

ABSTRACT

To break the three lockings during backpropagation (BP) process for neural network training, multiple decoupled learning methods have been investigated recently. These methods either lead to significant drop in accuracy performance or suffer from dramatic increase in memory usage. In this paper, a new form of decoupled learning, named decoupled neural network training scheme with re-computation and weight prediction (DTRP) is proposed. In DTRP, a re-computation scheme is adopted to solve the memory explosion problem, and a weight prediction scheme is proposed to deal with the weight delay caused by re-computation. Additionally, a batch compensation scheme is developed, allowing the proposed DTRP to run faster. Theoretical analysis shows that DTRP is guaranteed to converge to crical points under certain conditions. Experiments are conducted by training various convolutional neural networks on several classification datasets, showing comparable or better results than the state-of-the-art methods and BP. These experiments also reveal that adopting the proposed method, the memory explosion problem is effectively solved, and a significant acceleration is achieved.


Subject(s)
Learning , Neural Networks, Computer , Humans , Memory Disorders
16.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36674446

ABSTRACT

Porcine reproductive and respiratory syndrome (PRRS) is a vertically transmitted reproductive disorder that is typically characterized by miscarriage, premature birth, and stillbirth in pregnant sows after infection. Such characteristics indicate that PRRSV can infect and penetrate the porcine placental barrier to infect fetus piglets. The porcine trophoblast is an important component of the placental barrier, and secretes various hormones, including estrogen and progesterone, to maintain normal pregnancy and embryonic development during pregnancy. It is conceivable that the pathogenic effects of PRRSV infection on porcine trophoblast cells may lead to reproductive failure; however, the underlying detailed mechanism of the interaction between porcine trophoblast (PTR2) cells and PRRSV is unknown. Therefore, we conducted genome-wide mRNA and long non-coding RNA (lncRNA) analysis profiling in PRRSV-infected PTR2. The results showed that 672 mRNAs and 476 lncRNAs were significantly different from the control group after viral infection. Target genes of the co-expression and co-location of differential mRNAs and lncRNAs were enriched by GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that most of the pathways were involved in cell nutrient metabolism, cell proliferation, and differentiation. Specifically, the estrogen signaling pathway, the PI3K (PhosphoInositide-3 Kinase)-Akt (serine/threonine kinase) signaling pathway, and the insulin secretion related to embryonic development were selected for analysis. Further research found that PRRSV inhibits the expression of G-protein-coupled estrogen receptor 1 (GPER1), thereby reducing estrogen-induced phosphorylation of AKT and the mammalian target of rapamycin (mTOR). The reduction in the phosphorylation of AKT and mTOR blocks the activation of the GPER1- PI3K-AKT-mTOR signaling pathway, consequently restraining insulin secretion, impacting PTR2 cell proliferation, differentiation, and nutrient metabolism. We also found that PRRSV triggered trophoblast cell apoptosis, interrupting the integrity of the placental villus barrier. Furthermore, the interaction network diagram of lncRNA, regulating GPER1 and apoptosis-related genes, was constructed, providing a reference for enriching the functions of these lncRNA in the future. In summary, this article elucidated the differential expression of mRNA and lncRNA in trophoblast cells infected with PRRSV. This infection could inhibit the PI3K-AKT-mTOR pathway and trigger apoptosis, providing insight into the mechanism of the vertical transmission of PRRSV and the manifestation of reproductive failure.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , RNA, Long Noncoding , Swine , Animals , Female , Pregnancy , Porcine respiratory and reproductive syndrome virus/genetics , RNA, Long Noncoding/genetics , Trophoblasts , RNA, Messenger/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt , Placenta , Porcine Reproductive and Respiratory Syndrome/genetics , TOR Serine-Threonine Kinases , Estrogens , Mammals/genetics
17.
J Phys Chem Lett ; 13(50): 11678-11688, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36511563

ABSTRACT

The long short-term memory recurrent neural network (LSTM-RNN) approach is applied to realize the trajectory-based nonadiabatic dynamics within the framework of the symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian (MM-SQC). After construction, the LSTM-RNN model allows us to propagate the entire trajectory evolutions of all involved degrees of freedoms (DOFs) from initial conditions. The proposed idea is proven to be reliable and accurate in the simulations of the dynamics of several site-exciton electron-phonon coupling models and three Tully's scattering models. It indicates that the LSTM-RNN model perfectly captures the dynamical information on the trajectory evolution in the MM-SQC dynamics. Our work proposes a novel machine learning approach in the simulation of trajectory-based nonadiabatic dynamic of complex systems with a large number of DOFs.

18.
Food Chem X ; 16: 100517, 2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36425007

ABSTRACT

In this work, octenyl succinic anhydride (OSA) chemical modification with surfactant physical modification was combined to modify bovine bone gelatin (BBG) for emulsion stabilization at pH 6.0 (to simulate acidic food environment). OSA modification decreased the ß-sheet percentage and increased ß-turn percentage of BBG. Further, the combination of OSA modification with surfactant physical modification had obvious and different effects on the emulsifying properties of BBG. The creaming stability of gelatin/surfactant-stabilized emulsions was dependent on gelatin structure, surfactant type, and preparation pH. The emulsions stabilized by OBBG/Span 80 and OBBG/soybean lecithin (only blurry creaming at day 28) had significantly better creaming stability than other emulsions. These results demonstrated that the combination of OSA modification with surfactant modification could be applied to improve the emulsifying properties of BBG.

19.
J Chem Theory Comput ; 18(10): 5837-5855, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36184823

ABSTRACT

The machine learning approaches are applied in the dynamical simulation of open quantum systems. The long short-term memory recurrent neural network (LSTM-RNN) models are used to simulate the long-time quantum dynamics, which are built based on the key information of the short-time evolution. We employ various hyperparameter optimization methods, including simulated annealing, Bayesian optimization with tree-structured parzen estimator, and random search, to achieve the automatic construction and adjustment of the LSTM-RNN models. The implementation details of three hyperparameter optimization methods are examined, and among them, the simulated annealing approach is strongly recommended due to its excellent performance. The uncertainties of the machine learning models are comprehensively analyzed by the combination of bootstrap sampling and Monte Carlo dropout approaches, which give the prediction confidence of the LSTM-RNN models in the simulation of the open quantum dynamics. This work builds an effective machine learning approach to simulate the dynamics evolution of open quantum systems. In addition, the current study provides an efficient protocol to build optimal neural networks and estimate the trustiness of the machine learning models.


Subject(s)
Machine Learning , Neural Networks, Computer , Bayes Theorem , Uncertainty
20.
Front Immunol ; 13: 979983, 2022.
Article in English | MEDLINE | ID: mdl-36059468

ABSTRACT

Background: Patients after kidney transplantation need to take long-term immunosuppressive and other drugs. Some of these drug side effects are easily confused with the symptoms of Fanconi syndrome, resulting in misdiagnosis and missed diagnosis, and causing serious consequences to patients. Therefore, improving awareness, early diagnosis and treatment of Fanconi syndrome after kidney transplantation is critical. Methods: This retrospective study analyzed 1728 cases of allogeneic kidney transplant patients admitted to the Second Xiangya Hospital of Central South University from July 2016 to January 2021. Two patients with Fanconi syndrome secondary to drugs, adefovir dipivoxil (ADV) and tacrolimus, were screened. We summarized the diagnostic process, clinical data, and prognosis. Results: The onset of Fanconi syndrome secondary to ADV after renal transplantation was insidious, and the condition developed after long-term medication (>10 years). It mainly manifested as bone pain, osteomalacia, and scoliosis in the late stage and was accompanied by obvious proximal renal tubular damage (severe hypophosphatemia, hypokalemia, hypocalcemia, hypouricemia, glycosuria, protein urine, acidosis, etc.) and renal function damage (increased creatinine and azotemia). The pathological findings included mitochondrial swelling and deformity in renal tubular epithelial cells. The above symptoms and signs were relieved after drug withdrawal, but the scoliosis was difficult to rectify. Fanconi syndrome secondary to tacrolimus has a single manifestation, increased creatinine, which can be easily confused with tacrolimus nephrotoxicity. However, it is often ineffective to reduce the dose of tacrolomus, and proximal renal failure can be found in the later stage of disease development. There was no abnormality in the bone metabolism index and imageological examination findings. The creatinine level decreased rapidly, the proximal renal tubule function returned to normal, and no severe electrolyte imbalance or urinary component loss occurred when the immunosuppression was changed from tacrolimus to cyclosporine A. Conclusions: For the first time, drug-induced Fanconi syndrome after kidney transplantation was reported. These results confirmed that the long-term use of ADV or tacrolimus after kidney transplantation may have serious consequences, some of which are irreversible. Greater understanding of Fanconi syndrome after kidney transplantation is necessary in order to avoid incorrect and missed diagnosis.


Subject(s)
Fanconi Anemia , Fanconi Syndrome , Kidney Transplantation , Renal Insufficiency , Scoliosis , Allografts , Antiviral Agents/adverse effects , Creatinine , Fanconi Anemia/pathology , Fanconi Syndrome/chemically induced , Fanconi Syndrome/diagnosis , Fanconi Syndrome/therapy , Humans , Kidney Transplantation/adverse effects , Kidney Tubules, Proximal/pathology , Retrospective Studies , Scoliosis/chemically induced , Scoliosis/pathology , Tacrolimus/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...