Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 175: 116633, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670049

ABSTRACT

Sepsis is a severe inflammatory disorder that can lead to life-threatening multiple organ injury. Lipopolysaccharide (LPS)-induced inflammation is the leading cause of multiple organ failure in sepsis. This study aimed to explore the effect of a novel agent, 2-(4-hydroxy-3-methoxyphenyl)-benzothiazole (YL-109), on LPS-induced multiple organ injury and the molecular mechanisms underlying these processes. The results showed that YL-109 protected against LPS-induced high mortality, cardiac dysfunction, pulmonary and intestinal injury through inhibiting the proinflammatory response, NLRP3 expression and pyroptosis-associated indicators in mouse tissues. YL-109 suppressed LPS-initiated cytokine release, pyroptosis and pyroptosis-related protein expression in HL-1, IEC-6 and MLE-12 cells, which was consistent with the results of the in vivo experiments. Mechanistically, YL-109 reduces phosphorylated ERK (extracellular signal-regulated kinase) levels and NF-κB activation, which are achieved through upregulating CHIP (carboxy terminus of Hsc70-interacting protein) expression, thereby inhibiting c-Jun and c-Fos activation as well as NLRP3 expression. As an E3 ligase, CHIP overexpression obviously promoted the degradation of phosphorylated ERK and inhibited the expression of NF-κB-mediated NLRP3 in cells stimulated with LPS. The protective effects of YL-109 against cardiac, pulmonary and intestinal damage, inflammation and pyroptosis caused by LPS were eliminated in CHIP knockout mice. Our results not only reveal the protective effect and molecular mechanism of YL-109 against LPS-mediated organs damage but also provide additional insights into the effect of CHIP on negatively regulating pyroptosis and inflammatory pathways.


Subject(s)
Lipopolysaccharides , Mice, Inbred C57BL , Multiple Organ Failure , Pyroptosis , Sepsis , Transcription Factor AP-1 , Ubiquitin-Protein Ligases , Up-Regulation , Animals , Pyroptosis/drug effects , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Mice , Up-Regulation/drug effects , Multiple Organ Failure/metabolism , Multiple Organ Failure/prevention & control , Multiple Organ Failure/drug therapy , Male , Transcription Factor AP-1/metabolism , Ubiquitin-Protein Ligases/metabolism , Cell Line , Benzothiazoles/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Signal Transduction/drug effects , MAP Kinase Signaling System/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL