Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Psychiatry ; 89(9): 857-867, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33516458

ABSTRACT

BACKGROUND: Exposure-based psychotherapy is a first-line treatment for posttraumatic stress disorder (PTSD), but its mechanisms are poorly understood. Functional brain connectivity is a promising metric for identifying treatment mechanisms and biosignatures of therapeutic response. To this end, we assessed amygdala and insula treatment-related connectivity changes and their relationship to PTSD symptom improvements. METHODS: Individuals with a primary PTSD diagnosis (N = 66) participated in a randomized clinical trial of prolonged exposure therapy (n = 36) versus treatment waiting list (n = 30). Task-free functional magnetic resonance imaging was completed prior to randomization and 1 month following cessation of treatment/waiting list. Whole-brain blood oxygenation level-dependent responses were acquired. Intrinsic connectivity was assessed by subregion in the amygdala and insula, limbic structures key to the disorder pathophysiology. Dynamic causal modeling assessed evidence for effective connectivity changes in select nodes informed by intrinsic connectivity findings. RESULTS: The amygdala and insula displayed widespread patterns of primarily subregion-uniform intrinsic connectivity change, including increased connectivity between the amygdala and insula; increased connectivity of both regions with the ventral prefrontal cortex and frontopolar and sensory cortices; and decreased connectivity of both regions with the left frontoparietal nodes of the executive control network. Larger decreases in amygdala-frontal connectivity and insula-parietal connectivity were associated with larger PTSD symptom reductions. Dynamic causal modeling evidence suggested that treatment decreased left frontal inhibition of the left amygdala, and larger decreases were associated with larger symptom reductions. CONCLUSIONS: PTSD psychotherapy adaptively attenuates functional interactions between frontoparietal and limbic brain circuitry at rest, which may reflect a potential mechanism or biosignature of recovery.


Subject(s)
Implosive Therapy , Stress Disorders, Post-Traumatic , Amygdala , Brain , Humans , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/therapy
2.
Sci Transl Med ; 11(486)2019 04 03.
Article in English | MEDLINE | ID: mdl-30944165

ABSTRACT

A mechanistic understanding of the pathology of psychiatric disorders has been hampered by extensive heterogeneity in biology, symptoms, and behavior within diagnostic categories that are defined subjectively. We investigated whether leveraging individual differences in information-processing impairments in patients with post-traumatic stress disorder (PTSD) could reveal phenotypes within the disorder. We found that a subgroup of patients with PTSD from two independent cohorts displayed both aberrant functional connectivity within the ventral attention network (VAN) as revealed by functional magnetic resonance imaging (fMRI) neuroimaging and impaired verbal memory on a word list learning task. This combined phenotype was not associated with differences in symptoms or comorbidities, but nonetheless could be used to predict a poor response to psychotherapy, the best-validated treatment for PTSD. Using concurrent focal noninvasive transcranial magnetic stimulation and electroencephalography, we then identified alterations in neural signal flow in the VAN that were evoked by direct stimulation of that network. These alterations were associated with individual differences in functional fMRI connectivity within the VAN. Our findings define specific neurobiological mechanisms in a subgroup of patients with PTSD that could contribute to the poor response to psychotherapy.


Subject(s)
Magnetic Resonance Imaging , Nerve Net/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/therapy , Attention , Behavior , Brain Mapping , Comorbidity , Electroencephalography , Humans , Mental Recall , Rest , Stress Disorders, Post-Traumatic/psychology , Transcranial Magnetic Stimulation , Treatment Outcome
3.
Am J Psychiatry ; 174(12): 1175-1184, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28715907

ABSTRACT

OBJECTIVE: Exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD), but a comprehensive, emotion-focused perspective on how psychotherapy affects brain function is lacking. The authors assessed changes in brain function after prolonged exposure therapy across three emotional reactivity and regulation paradigms. METHOD: Individuals with PTSD underwent functional MRI (fMRI) at rest and while completing three tasks assessing emotional reactivity and regulation. Individuals were then randomly assigned to immediate prolonged exposure treatment (N=36) or a waiting list condition (N=30) and underwent a second scan approximately 4 weeks after the last treatment session or a comparable waiting period, respectively. RESULTS: Treatment-specific changes were observed only during cognitive reappraisal of negative images. Psychotherapy increased lateral frontopolar cortex activity and connectivity with the ventromedial prefrontal cortex/ventral striatum. Greater increases in frontopolar activation were associated with improvement in hyperarousal symptoms and psychological well-being. The frontopolar cortex also displayed a greater variety of temporal resting-state signal pattern changes after treatment. Concurrent transcranial magnetic stimulation and fMRI in healthy participants demonstrated that the lateral frontopolar cortex exerts downstream influence on the ventromedial prefrontal cortex/ventral striatum. CONCLUSIONS: Changes in frontopolar function during deliberate regulation of negative affect is one key mechanism of adaptive psychotherapeutic change in PTSD. Given that frontopolar connectivity with ventromedial regions during emotion regulation is enhanced by psychotherapy and that the frontopolar cortex exerts downstream influence on ventromedial regions in healthy individuals, these findings inform a novel conceptualization of how psychotherapy works, and they identify a promising target for stimulation-based therapeutics.


Subject(s)
Corpus Striatum/physiopathology , Emotions/physiology , Frontal Lobe/physiopathology , Implosive Therapy , Prefrontal Cortex/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/therapy , Adolescent , Adult , Female , Frontal Lobe/physiology , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Pathways/physiopathology , Transcranial Magnetic Stimulation , Treatment Outcome , Young Adult
4.
Am J Psychiatry ; 174(12): 1163-1174, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28715908

ABSTRACT

OBJECTIVE: Exposure therapy is an effective treatment for posttraumatic stress disorder (PTSD), but many patients do not respond. Brain functions governing treatment outcome are not well characterized. The authors examined brain systems relevant to emotional reactivity and regulation, constructs that are thought to be central to PTSD and exposure therapy effects, to identify the functional traits of individuals most likely to benefit from treatment. METHOD: Individuals with PTSD underwent functional MRI (fMRI) while completing three tasks assessing emotional reactivity and regulation. Participants were then randomly assigned to immediate prolonged exposure treatment (N=36) or a waiting list condition (N=30). A random subset of the prolonged exposure group (N=17) underwent single-pulse transcranial magnetic stimulation (TMS) concurrent with fMRI to examine whether predictive activation patterns reflect causal influence within circuits. Linear mixed-effects modeling in line with the intent-to-treat principle was used to examine how baseline brain function moderated the effect of treatment on PTSD symptoms. RESULTS: At baseline, individuals with larger treatment-related symptom reductions (compared with the waiting list condition) demonstrated 1) greater dorsal prefrontal activation and 2) less left amygdala activation, both during emotion reactivity; 3) better inhibition of the left amygdala induced by single TMS pulses to the right dorsolateral prefrontal cortex; and 4) greater ventromedial prefrontal/ventral striatal activation during emotional conflict regulation. Reappraisal-related activation was not a significant moderator of the treatment effect. CONCLUSIONS: Capacity to benefit from prolonged exposure in PTSD is gated by the degree to which prefrontal resources are spontaneously engaged when superficially processing threat and adaptively mitigating emotional interference, but not when deliberately reducing negative emotionality.


Subject(s)
Amygdala/physiopathology , Corpus Striatum/physiopathology , Emotions/physiology , Implosive Therapy , Prefrontal Cortex/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Stress Disorders, Post-Traumatic/therapy , Adolescent , Adult , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neural Inhibition , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...