Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 478
Filter
1.
World J Clin Cases ; 12(19): 3995-4002, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38994281

ABSTRACT

BACKGROUND: Owing to the advancement in bacterial identification techniques, the detection rate of non-tuberculous mycobacterium (NTM) has been on the rise. Different from Mycobacterium tuberculosis, the clinical symptoms of NTM are not easily detected, and the clinical efficacy and prognosis are somewhat heterogeneous. To report a case of Mycobacterium gordoniasis of cervical lymph node diagnosed in Anhui Chest Hospital in July 2022. CASE SUMMARY: Upon examination, the patient who weighed 67.5 kg, was human immunodeficiency virus negative, healthy, without hypertension, diabetes, heart disease and other basic diseases microscopic analysis revealed granulomatous inflammation with coagulation necrosis in the lymphocyte, and tuberculosis was not ruled out. Plain computed tomography scans of the neck and chest indicated the presence of a single grayish-yellow and grayish-brown tissue, the dimensions of which was top of form 10.5 cm × 3.0 cm × 1.5 cm. After pathological consultation in our hospital, the diagnosis was confirmed as NTM infection. CONCLUSION: This case report and the clinical epidemiological research on improving NTM have important guiding significance for improving decision-making in clinical treatments.

2.
Chem Sci ; 15(28): 11053-11064, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39027275

ABSTRACT

Developing a high-performance near-ultraviolet (NUV) material and its simple non-doped device with a small efficiency roll-off and good color purity is a promising but challenging task. Here, we proposed a novel donor'-donor-acceptor (D'-D-A) type molecular strategy to largely solve the intrinsic contradictions among wide-bandgap NUV emission, fluorescence efficiency, carrier injection and transport. An efficient NUV fluorophore, 3,6-mPPICNC3, exhibiting a hybridized local and charge-transfer state, is achieved through precise molecular configuration engineering, realizing similar hole and electron mobilities at both low and high electric fields. Moreover, the planarized intramolecular charge transfer excited state and steric hindrance effect endow 3,6-mPPICNC3 with a considerable luminous efficiency and good color purity in the aggregation state. Consequently, the non-doped device emitting stable NUV light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.160, 0.032) and a narrow full width at half maximum of 44 nm exhibits a state-of-the-art external quantum efficiency (EQE) of 7.67% and negligible efficiency roll-off over a luminance range from 0 to 3300 cd m-2. This is a record-high efficiency among all the reported non-doped NUV devices. Amazingly, an EQE of 7.85% and CIE coordinates of (0.161, 0.025) are achieved in the doped device. This demonstrates that the D'-D-A-type molecular structure has great potential for developing high-performance organic light-emitting materials and their optoelectronic applications.

3.
Bioresour Technol ; 406: 131032, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925403

ABSTRACT

Controlling CaCO3 precipitation within anaerobic granular sludge (AnGS) is crucial for the anaerobic treatment of paper recycling wastewater. A viable strategy was proposed to control calcification by adjusting a mild acidic condition in an anaerobic reactor without hindering organic degradation. The results indicated that lowering the bulk pH (6.5 to 6.8) reduced calcium precipitation by 60.1 % in calcium-rich influent (Ca2+ 1200 mg/L) and eradicated CaCO3 deposition on AnGS. Extracellular polymeric substances (EPS) have proven to be crucial participants in Ca2+ migration. The acidic solution weakens the interactions between EPS and Ca2+ and then diminishes the EPS adsorption capacity and affinity for Ca2+. The mild acidic environment goes beyond reducing CaCO3 formation in wastewater. EPS protonation reduced the probability of Ca2+ adhering to the AnGS surface, which halted calcium transportation from bulk liquid to granule. This work offers a feasible strategy to prevent AnGS calcification in high-calcium wastewater.


Subject(s)
Calcium Carbonate , Calcium , Sewage , Calcium/metabolism , Hydrogen-Ion Concentration , Calcium Carbonate/chemistry , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/chemistry , Adsorption , Wastewater/chemistry , Anaerobiosis , Surface Properties , Acids/chemistry , Bioreactors
4.
J Infect ; 89(2): 106208, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908522

ABSTRACT

OBJECTIVE: Similar with influenza virus, antigenic drift is highly relevant to SARS-CoV-2 evolution, and immune imprinting has been found to limit the performance of updated vaccines based on the emerging variants of SARS-CoV-2. We aimed to investigate whether repeated exposure to Omicron variant could reduce the immune imprinting from previous vaccination. METHODS: A total of 194 participants with different status of vaccination (unvaccinated, regular vaccination and booster vaccination) confirmed for first infection and re-infection with BA.5, BF.7 and XBB variants were enrolled, and the neutralizing profiles against wild type (WT) SARS-CoV-2 and Omicron sub-variants were analyzed. RESULTS: Neutralizing potency against the corresponding infected variant is significantly hampered along with the doses of vaccination during first infection. However, for the participants with first infection of BA.5/BF.7 variants and re-infection of XBB variant, immune imprinting was obviously alleviated, indicated as significantly increased ratio of the corresponding infected variant/WT ID50 titers and higher percentage of samples with high neutralizing activities (ID50 > 500) against BA.5, BF.7 and XBB variants. Moreover, repeated Omicron infection could induce strong neutralizing potency with broad neutralizing profiles against a series of other Omicron sub-variants, both in the vaccine naive and vaccine experienced individuals. CONCLUSIONS: Our results demonstrate that repeated Omicron infection dampens immune imprinting from vaccination with WT SARS-CoV-2 and induces broad neutralizing profiles against Omicron sub-variants.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccination , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Female , Adult , Middle Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Broadly Neutralizing Antibodies/immunology , Antigenic Drift and Shift/immunology , Immunization, Secondary , Aged
5.
Proc Natl Acad Sci U S A ; 121(25): e2322403121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865273

ABSTRACT

Fluorine magnetic resonance imaging (19F-MRI) is particularly promising for biomedical applications owing to the absence of fluorine in most biological systems. However, its use has been limited by the lack of safe and water-soluble imaging agents with high fluorine contents and suitable relaxation properties. We report innovative 19F-MRI agents based on supramolecular dendrimers self-assembled by an amphiphilic dendrimer composed of a hydrophobic alkyl chain and a hydrophilic dendron. Specifically, this amphiphilic dendrimer bears multiple negatively charged terminals with high fluorine content, which effectively prevented intra- and intermolecular aggregation of fluorinated entities via electrostatic repulsion. This permitted high fluorine nuclei mobility alongside good water solubility with favorable relaxation properties for use in 19F-MRI. Importantly, the self-assembling 19F-MRI agent was able to encapsulate the near-infrared fluorescence (NIRF) agent DiR and the anticancer drug paclitaxel for multimodal 19F-MRI and NIRF imaging of and theranostics for pancreatic cancer, a deadly disease for which there remains no adequate early detection method or efficacious treatment. The 19F-MRI and multimodal 19F-MRI and NIRF imaging studies on human pancreatic cancer xenografts in mice confirmed the capability of both imaging modalities to specifically image the tumors and demonstrated the efficacy of the theranostic agent in cancer treatment, largely outperforming the clinical anticancer drug paclitaxel. Consequently, these dendrimer nanosystems constitute promising 19F-MRI agents for effective cancer management. This study offers a broad avenue to the construction of 19F-MRI agents and theranostics, exploiting self-assembling supramolecular dendrimer chemistry.


Subject(s)
Dendrimers , Fluorine , Theranostic Nanomedicine , Dendrimers/chemistry , Animals , Theranostic Nanomedicine/methods , Humans , Mice , Fluorine/chemistry , Paclitaxel/chemistry , Paclitaxel/therapeutic use , Magnetic Resonance Imaging/methods , Cell Line, Tumor , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/therapy , Fluorine-19 Magnetic Resonance Imaging/methods , Mice, Nude , Contrast Media/chemistry
6.
JMIR Cancer ; 10: e45331, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838304

ABSTRACT

BACKGROUND: Telehealth has emerged as a popular channel for providing outpatient services in many countries. However, the majority of telehealth systems focus on operational functions and offer only a sectional patient journey at most. Experiences with incorporating longitudinal real-world medical record data into telehealth are valuable but have not been widely shared. The feasibility and usability of such a telehealth platform, with comprehensive, real-world data via a live feed, for cancer patient care are yet to be studied. OBJECTIVE: The primary purpose of this study is to understand the feasibility and usability of cancer patient care using a telehealth platform with longitudinal, real-world data via a live feed as a supplement to hospital electronic medical record systems specifically from physician's perspective. METHODS: A telehealth platform was constructed and launched for both physicians and patients. Real-world data were collected and curated using a comprehensive data model. Physician activities on the platform were recorded as system logs and analyzed. In February 2023, a survey was conducted among the platform's registered physicians to assess the specific areas of patient care and to quantify their before and after experiences, including the number of patients managed, time spent, dropout rate, visit rate, and follow-up data. Descriptive and inferential statistical analyses were performed on the data sets. RESULTS: Over a period of 15 months, 16,035 unique users (13,888 patients, 1539 friends and family members, and 174 physician groups with 608 individuals) registered on the platform. More than 382,000 messages including text, reminders, and pictures were generated by physicians when communicating with patients. The survey was completed by 78 group leaders (45% of the 174 physician groups). Of the participants, 84% (65.6/78; SD 8.7) reported a positive experience, with efficient communication, remote supervision, quicker response to questions, adverse event prevention, more complete follow-up data, patient risk reduction, cross-organization collaboration, and a reduction in in-person visits. The majority of the participants (59/78, 76% to 76/78, 97.4%) estimated improvements in time spent, number of patients managed, the drop-off rate, and access to medical history, with the average ranging from 57% to 105%. When compared with prior platforms, responses from physicians indicated better experiences in terms of time spent, the drop-off rate, and medical history, while the number of patients managed did not significantly change. CONCLUSIONS: This study suggests that a telehealth platform, equipped with comprehensive, real-world data via a live feed, is feasible and effective for cancer patient care. It enhances inpatient management by improving time efficiencies, reducing drop-off rates, and providing easy access to medical history. Moreover, it fosters a positive experience in physician-patient interactions.

7.
IUBMB Life ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38923653

ABSTRACT

To date, SARS-CoV-2 has caused millions of deaths, but the choice of treatment is limited. We previously established a platform for identifying Food and Drug Administration (FDA)-approved repurposed drugs for avian influenza A virus infections that could be used for coronavirus disease 2019 (COVID-19) treatment. In this study, we analyzed blood samples from two cohorts of 63 COVID-19 patients, including 19 patients with severe disease. Among the 39 FDA-approved drugs we identified for COVID-19 therapy in both cohorts, 23 drugs were confirmed by literature mining data, including 14 drugs already under COVID-19 clinical trials and 9 drugs reported for COVID-19 treatments, suggesting the remaining 16 FDA-approved drugs may be candidates for COVID-19 therapy. Additionally, we previously reported that herbal small RNAs (sRNAs) could be effective components in traditional Chinese medicine (TCM) for treating COVID-19. Based on the abundance of sRNAs, we screened the 245 TCMs in the Bencao (herbal) sRNA Atlas that we had previously established, and we found that the top 12 TCMs for COVID-19 treatment was consistent across both cohorts. We validated the efficiency of the top 30 sRNAs from each of the top 3 TCMs for COVID-19 treatment in poly(I:C)-stimulated human non-small cell lung cancer cells (A549 cells). In conclusion, our study recommends potential COVID-19 remedies using FDA-approved repurposed drugs and herbal sRNAs from TCMs.

8.
Waste Manag ; 184: 63-71, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38795541

ABSTRACT

While pre-drying of sewage sludge prior to hydrothermal carbonization is rarely practiced, various pre-drying methods have been performed in literature at lab-scale for convenient solid-to-liquid ratio adjustment. This has created a barrier for comparing hydrochar quality between different studies. Given pre-drying can destroy the floc structure of sewage sludge, we hypothesize that pre-drying may promote the hydrolysis step during hydrothermal carbonization process, resulting in improved hydrochar quality with low nitrogen content. In the current study, the influence of different pre-drying methods (freeze-dry, air-dry and vacuum-dry at 70 °C and 105 °C) on the subsequent hydrothermal carbonization of sewage sludge at 220 °C was assessed in terms of sewage sludge and hydrochar's chemical composition, fuel properties, pyrolysis and combustion behavior, as well as the characterization of the liquid phase. The results indicate that although pre-drying impacts sewage sludge's chemical composition, pyrolysis and combustion behavior, no significant differences exist in the yield, chemical composition, fuel properties, and pyrolysis and combustion behavior of the hydrochar. Therefore, the use of pre-drying would not affect the hydrothermal carbonization process of sewage sludge, and a comparison can be made on hydrochar quality between different studies with or without pre-drying.


Subject(s)
Desiccation , Pyrolysis , Sewage , Sewage/chemistry , Desiccation/methods , Charcoal/chemistry , Waste Disposal, Fluid/methods
9.
Sci Adv ; 10(21): eadj8184, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781332

ABSTRACT

Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.


Subject(s)
Microbiota , Oceans and Seas , Phylogeny , RNA, Ribosomal, 16S , Seawater , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Bacteria/genetics , Bacteria/classification
10.
World J Gastrointest Oncol ; 16(5): 2038-2059, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764836

ABSTRACT

BACKGROUND: Heterogeneous ribonucleoprotein A1 (hnRNPA1) has been reported to enhance the Warburg effect and promote colon cancer (CC) cell proliferation, but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated. AIM: To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway. METHODS: Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b. The relationship between the expression values and the clinicopathological features of the patients was investigated. Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction, while differences in protein expression were analyzed using western blot. Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and cell cycle and apoptosis were detected using flow cytometric assays. The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay. The Warburg effect was evaluated by glucose uptake and lactic acid production assays. RESULTS: The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls (P < 0.05). Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC, including stage I, II-III, and IV. Furthermore, the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification. HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway, thereby promoting proliferation of HCT116 and SW620 cells. However, the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b, effectively blocking the Warburg effect. CONCLUSION: These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.

11.
Compr Rev Food Sci Food Saf ; 23(3): e13336, 2024 05.
Article in English | MEDLINE | ID: mdl-38558497

ABSTRACT

Fish inevitably face numerous stressors in growth, processing, and circulation. In recent years, stress-related change in fish muscle quality has gradually become a research hotspot. Thus, the understanding of the mechanism regarding the change is constantly deepening. This review introduces the physiological regulation of fish under stress, with particular attention devoted to signal transduction, gene expression, and metabolism, and changes in the physiological characteristics of muscular cells. Then, the influences of various stressors on the nutrition, physical properties, and flavor of the fish muscle are sequentially described. This review emphasizes recent advances in the mechanisms underlying changes in muscle quality, which are believed to be involved mainly in physiological regulation under stress. In addition, studies are also introduced on improving muscle quality by mitigating fish stress.


Subject(s)
Fishes , Nutritional Status , Animals , Fishes/genetics , Fishes/metabolism , Muscles
12.
J Exp Clin Cancer Res ; 43(1): 128, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685050

ABSTRACT

BACKGROUND: Brain metastasis is one of the main causes of recurrence and death in non-small cell lung cancer (NSCLC). Although radiotherapy is the main local therapy for brain metastasis, it is inevitable that some cancer cells become resistant to radiation. Microglia, as macrophages colonized in the brain, play an important role in the tumor microenvironment. Radiotherapy could activate microglia to polarize into both the M1 and M2 phenotypes. Therefore, searching for crosstalk molecules within the microenvironment that can specifically regulate the polarization of microglia is a potential strategy for improving radiation resistance. METHODS: We used databases to detect the expression of MIF in NSCLC and its relationship with prognosis. We analyzed the effects of targeted blockade of the MIF/CD74 axis on the polarization and function of microglia during radiotherapy using flow cytometry. The mouse model of brain metastasis was used to assess the effect of targeted blockade of MIF/CD74 axis on the growth of brain metastasis. RESULT: Our findings reveals that the macrophage migration inhibitory factor (MIF) was highly expressed in NSCLC and is associated with the prognosis of NSCLC. Mechanistically, we demonstrated CD74 inhibition reversed radiation-induced AKT phosphorylation in microglia and promoted the M1 polarization in combination of radiation. Additionally, blocking the MIF-CD74 interaction between NSCLC and microglia promoted microglia M1 polarization. Furthermore, radiation improved tumor hypoxia to decrease HIF-1α dependent MIF secretion by NSCLC. MIF inhibition enhanced radiosensitivity for brain metastasis via synergistically promoting microglia M1 polarization in vivo. CONCLUSIONS: Our study revealed that targeting the MIF-CD74 axis promoted microglia M1 polarization and synergized with radiotherapy for brain metastasis in NSCLC.


Subject(s)
Antigens, Differentiation, B-Lymphocyte , Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Histocompatibility Antigens Class II , Lung Neoplasms , Macrophage Migration-Inhibitory Factors , Microglia , Animals , Female , Humans , Mice , Antigens, Differentiation, B-Lymphocyte/metabolism , Brain Neoplasms/secondary , Brain Neoplasms/radiotherapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Histocompatibility Antigens Class II/metabolism , Intramolecular Oxidoreductases/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/radiotherapy , Lung Neoplasms/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Microglia/metabolism , Microglia/pathology
13.
World J Gastrointest Oncol ; 16(4): 1204-1212, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660651

ABSTRACT

BACKGROUND: Multiple primary malignant tumors (MPMTs) was first described by Billroth as early as 1889, with the first report published by Warren and Gates in 1932. Since then, numerous cases have been reported. A literature review of 1104269 patients with cancer revealed that the incidence of MPMTs ranged from 0.73 to 11.7%. In recent years, however, there has been a significant upward trend in the incidence of this phenomenon, which may be associated with many different factors, including the advancement of modern diagnostic procedures facilitating the examination and diagnosis of more MPMTs, increased exposure to chemotherapy and radiotherapy that exacerbate the risk of new malignant tumors in patients with cancer, and prolonged survival of patients with cancer allowing sufficient time for the development of new primary cancers. AIM: To analyze the incidence, clinical features, treatment factors, prevalence, and prognosis of patients with MPMTs in the gastrointestinal tract treated in a single center. Additionally, we analyzed the different tumor combinations, time interval between the occurrence of tumors, and staging. METHODS: This retrospective cohort study analyzed 8059 patients with pathologically confirmed gastrointestinal malignant tumors treated at the Gansu Province Hospital in Lanzhou, Gansu, China between June 2011 and June 2020. Of these, 85 patients had MPMTs. The clinical features, treatment factors, prevalence, and prognosis of this latter cohort were analyzed. RESULTS: The incidence of MPMTs in patients with gastrointestinal malignant tumors was 1.05% (85/8059), including 83 double primary malignant tumors and two triple primary malignant tumors of which 57 (67.06%) were synchronous MPMTs (SMPMTs) and 28 (32.94%) were metachronous MPMTs (MMPMTs). The most frequent associations were found between the rectum colon cancers within the SMPMT category and the gastric-colon cancers within the MMPMT category. For the MMPMTs, the median interval was 53 months. The overall 1-, 3- and 5-year survival rates from diagnosis of the first primary cancer were 91.36%, 65.41%, and 45.97%, respectively; those from diagnosis of the second primary cancer were 67.90%, 29.90%, and 17.37%, respectively. CONCLUSION: MPMTs in the gastrointestinal tract have a high incidence and poor prognosis. Thus, it is necessary to perform both gastroscopy and colonoscopy in patients with gastrointestinal tumors. Multidisciplinary comprehensive diagnosis and treatment may improve the diagnosis rate and treatment efficiency of MPMTs.

14.
Clin Exp Nephrol ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643287

ABSTRACT

OBJECTIVE: Cardiovascular disease (CVD) represents the primary cause of mortality in patients afflicted with end-stage renal disease and undergoing peritoneal dialysis (PD) treatment. Galectin-3 (Gal-3), a molecule known to exhibit a correlation with CVD mortality garners considerable interest. The objective of this study was to explore the potential association between serum Gal-3 levels and other CVD risk factors among PD patients. METHODS: In this cross-sectional study, a total of 114 PD patients with a minimum of 3 months of PD treatment were enrolled. Serum Gal-3 levels were quantified using an enzyme-linked immunosorbent assay. The data of patients with Gal-3 levels higher and lower than 26.744 pg/ml were compared using Mann-Whitney U tests or t tests. Pearson's correlation or Spearman's correlation analysis and multivariate regression were used to assess the associations between the known risk factors for CVD and Gal-3. RESULTS: In comparison to the inter-group baseline data, the low Gal-3 group exhibited a higher glomerular filtration rate (GFR). Gal-3 levels correlate positively with PD duration, B-type natriuretic peptide (BNP), growth differentiation factor 15 (GDF-15), interventricular septal thickness in diastolic (IVST), and left ventricular mass index (LVMI). Conversely, Gal-3 exhibited a negative correlation with albumin levels. Multivariate linear regression analysis demonstrated a positive correlation between Gal-3 levels and BNP, GDF-15, PD duration, IVST and LVMI. Gal-3 levels were negatively correlated with albumin levels. CONCLUSIONS: Gal-3 was strongly associated with BNP, GDF-15, IVST and LVMI in patients undergoing PD treatment. Prospective studies should be carried out to determine whether Gal-3 can be a promising biomarker in predicting increased risk of adverse cardiovascular events in PD patients.

15.
Front Microbiol ; 15: 1356478, 2024.
Article in English | MEDLINE | ID: mdl-38633704

ABSTRACT

Background: Observational studies and some experimental investigations have indicated that gut microbiota are closely associated with the incidence and progression of chronic renal failure. However, the causal relationship between gut microbiota and chronic renal failure remains unclear. The present study employs a two-sample Mendelian randomization approach to infer the causal relationship between gut microbiota and chronic renal failure at the genetic level. This research aims to determine whether there is a causal effect of gut microbiota on the risk of chronic renal failure, aiming to provide new evidence to support targeted gut therapy for the treatment of chronic renal failure. Methods: Employing genome-wide association study (GWAS) data from the public MiBioGen and IEU OpenGWAS platform, a two-sample Mendelian randomization analysis was conducted. The causal relationship between gut microbiota and chronic renal failure was inferred using five different methods: Inverse Variance Weighted, MR-Egger, Weighted Median, Simple Mode, and Weighted Mode. The study incorporated sensitivity analyses that encompassed evaluations for pleiotropy and heterogeneity. Subsequently, the results of the Mendelian randomization analysis underwent a stringent correction for multiple testing, employing the False Discovery Rate method to enhance the validity of our findings. Results: According to the results from the Inverse Variance Weighted method, seven bacterial genera show a significant association with the outcome variable chronic renal failure. Of these, Ruminococcus (gauvreauii group) (OR = 0.82, 95% CI = 0.71-0.94, p = 0.004) may act as a protective factor against chronic renal failure, while the genera Escherichia-Shigella (OR = 1.22, 95% CI = 1.08-1.38, p = 0.001), Lactococcus (OR = 1.1, 95% CI = 1.02-1.19, p = 0.013), Odoribacter (OR = 1.23, 95% CI = 1.03-1.49, p = 0.026), Enterorhabdus (OR = 1.14, 95% CI = 1.00-1.29, p = 0.047), Eubacterium (eligens group) (OR = 1.18, 95% CI = 1.02-1.37, p = 0.024), and Howardella (OR = 1.18, 95% CI = 1.09-1.28, p < 0.001) may be risk factors for chronic renal failure. However, after correction for multiple comparisons using False Discovery Rate, only the associations with Escherichia-Shigella and Howardella remain significant, indicating that the other genera have suggestive associations. Sensitivity analyses did not reveal any pleiotropy or heterogeneity. Conclusion: Our two-sample Mendelian randomization study suggests that the genera Escherichia-Shigella and Howardella are risk factors for chronic renal failure, and they may serve as potential targets for future therapeutic interventions. However, the exact mechanisms of action are not yet clear, necessitating further research to elucidate their precise roles fully.

16.
Materials (Basel) ; 17(7)2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38611998

ABSTRACT

Manganese slag (MS) containing a certain amount of active hydration substances may be used as a kind of cementitious material. In the present study, we measured the mass, the relative dynamic modulus of elasticity (RDME), and the flexural and compressive strengths of MS high-performance concrete (MS-HPC) with added basalt fibers exposed to NaCl freeze-thaw cycles (N-FCs), NaCl dry-wet alternations (N-DAs), and Na2SO4 dry-wet alternations (NS-DAs). Scanning electron microscope energy-dispersive spectrometer (SEM-EDS) spectra, thermogravimetric analysis (TG) curves, and X-ray diffraction spectroscopy (XRD) curves were obtained. The mass ratio of MS ranged from 0% to 40%. The volume ratio of basalt fibers varied from 0% to 2%. We found that, as a result of salt action, the mass loss rate (MLR) exhibited linear functions which were inversely correlated with the mass ratio of MS and the volume ratio of basalt fibers. After salt action, MLR increased by rates of 0~56.3%, but this increase was attenuated by the addition of MS and basalt fibers. Corresponding increases in RDME exhibited a linear function which was positively correlated with MS mass ratios in a range of 0~55.1%. The addition of MS and basalt fibers also led to decreased attenuation of mechanical strength, while the addition of MS led to increased levels of flocculent hydration products and the elements Mn, Mg, and Fe. CaClOH and CaSO4 crystals were observed in XRD curves after N-DA and NS-DA actions, respectively. Finally, the addition of MS resulted in increased variation in TG values. However, the opposite result was obtained when dry-wet actions were exerted.

17.
BMC Med Genomics ; 17(1): 86, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627727

ABSTRACT

BACKGROUND: The interplay between exosomes and the tumor microenvironment (TME) remains unclear. We investigated the influence of exosomes on the TME in hepatocellular carcinoma (HCC), focusing on their mRNA expression profile. METHODS: mRNA expression profiles of exosomes were obtained from exoRBase. RNA sequencing data from HCC patients' tumors were acquired from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC). An exosome mRNA-related risk score model of prognostic value was established. The patients in the two databases were divided into high- and low-risk groups based on the median risk score value, and used to validate one another. Functional enrichment analysis was performed based on a differential gene prognosis model (DGPM). CIBERSORT was used to assess the abundance of immune cells in the TME. The correlation between the expression levels of immune checkpoint-related genes and DGPM was analyzed alongside the prediction value to drug sensitivity. RESULTS: A prognostic exosome mRNA-related 4-gene signature (DYNC1H1, PRKDC, CCDC88A, and ADAMTS5) was constructed and validated. A prognostic nomogram had prognostic ability for HCC. The genes for this model are involved in extracellular matrix, extracellular matrix (ECM)-receptor interaction, and the PI3K-Akt signaling pathway. Expression of genes here had a positive correlation with immune cell infiltration in the TME. CONCLUSIONS: Our study results demonstrate that an exosome mRNA-related risk model can be established in HCC, highlighting the functional significance of the molecules in prognosis and risk stratification.


Subject(s)
Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Exosomes/genetics , RNA, Messenger/genetics , Tumor Microenvironment , Phosphatidylinositol 3-Kinases , Liver Neoplasms/genetics , Prognosis , Risk Factors , Microfilament Proteins , Vesicular Transport Proteins
18.
Plants (Basel) ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38592783

ABSTRACT

This study aimed to determine the effects of the nitrogen (N) application period and level on the fate of fertilizer N and the contribution of N absorption and translocation to apple organ N. Two N application periods (labeled by the 15N tracer technique in spring and summer, represented by SP and SU, respectively) and three N levels (N0, MN, and HN) were used to determine the physiological indexes and aboveground, root, and soil 15N content of 4-year-old dwarf ('Red Fuji'/M9T337) and arborized ('Red Fuji'/Malus hupehensis Rehd.) apple trees. The results showed that HN led to shoot overgrowth, which was not conducive to the growth of the apple root system (root length, root tips, root surface area, and root volume) or the improvement of root activity. The contribution of soil N to apple organ N accounted for more than 50%, and the contribution of N application in summer to fruit N was higher than that in spring. Under HN treatment, the proportion of soil N absorbed by trees decreased, while that of fertilizer N increased; however, the highest proportion was still less than 50%, so apple trees were highly dependent on soil N. Under MN treatment, fertilizer N residue was similar to soil N consumption, and soil N fertility maintained a basic balance. Under HN treatment, fertilizer N residue was significantly higher than soil N consumption, indicating that excessive N application increased fertilizer N residue in the soil. Overall, the 15N utilization rate of arborized trees (17.33-22.38%) was higher than that of dwarf trees (12.89-16.91%). A total of 12.89-22.38% of fertilizer 15N was absorbed by trees, 30.37-35.41% of fertilizer 15N remained in the soil, and 44.65-54.46% of fertilizer 15N was lost. The 15N utilization rate and 15N residual rate of summer N application were higher than those of spring N application, and the 15N loss rate was lower than that of spring N application. High microbial biomass N (MBN) may be one of the reasons for the high N utilization rate and the low loss rate of N application in summer.

19.
Cytokine ; 178: 156568, 2024 06.
Article in English | MEDLINE | ID: mdl-38471420

ABSTRACT

BACKGROUND: Laryngopharyngeal reflux (LPR) is one of the most common disorders in otorhinolaryngology, affecting up to 10% of outpatients visiting otolaryngology departments. In addition, 50% of hoarseness cases are related to LPR. Pepsin reflux-induced aseptic inflammation is a major trigger of LPR; however, the underlying mechanisms are unclear. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome has become an important bridge between stimulation and sterile inflammation and is activated by intracellular reactive oxygen species (ROS) in response to danger signals, leading to an inflammatory cascade. In this study, we aimed to determine whether pepsin causes LPR-associated inflammatory injury via mediating inflammasome activation and explore the potential mechanism. METHODS: We evaluated NLRP3 inflammasome expression and ROS in the laryngeal mucosa using immunofluorescence and immunohistochemistry. Laryngeal epithelial cells were exposed to pepsin and analyzed using flow cytometry, western blotting, and real-time quantitative PCR to determine ROS, NLRP3, and pro-inflammatorycytokine levels. RESULTS: Pepsin expression was positively correlated with ROS as well as caspase-1 and IL-1ß levels in laryngeal tissues. Intracellular ROS levels were elevated by increased pepsin concentrations, which were attenuated by apocynin (APO)-a ROS inhibitor-in vitro. Furthermore, pepsin significantly induced the mRNA and protein expression of thioredoxin-interacting protein, NLRP3, caspase-1, and IL-1ß in a dose-dependent manner. APO and the NLRP3 inhibitor, MCC950, inhibited NLRP3 inflammasome formation and suppressed laryngeal epithelial cell damage. CONCLUSION: Our findings verified that pepsin could regulate the NLRP3/IL-1ß signaling pathway through ROS activation and further induce inflammatory injury in LPR. Targeting the ROS/NLRP3 inflammasome signaling pathway may help treat patients with LPR disease.


Subject(s)
Laryngopharyngeal Reflux , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Reactive Oxygen Species/metabolism , Pepsin A/metabolism , Signal Transduction , Inflammation/metabolism , Caspase 1/metabolism , Interleukin-1beta/metabolism
20.
Front Cell Infect Microbiol ; 14: 1332666, 2024.
Article in English | MEDLINE | ID: mdl-38495649

ABSTRACT

Background: The immune response to hepatitis B vaccine may be influenced by numerous factors, and patients with non/low response re-exposed to hepatitis B virus remain susceptible. Thus, a better understanding of the underlying mechanisms of non/low immune response in infants born to Hepatitis B surface antigen (HBsAg)-positive mothers is essential. Methods: 100 infants born to HBsAg-positive mothers from 2015 to 2020 were enrolled in the study, further divided into the non/low response group (n=13) and the moderate strong response group (n=87) based on the quantification of hepatitis B surface antibody at 12 months of age. The differential expression of 48 immune-related cytokines in the two groups was compared and analyzed in detail. The key cytokines were further identified and clinically predictive models were developed. Results: We found that 13 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group, compared with the moderate strong response group at birth. In addition, 9 cytokines were lowly expressed and one cytokine was highly expressed in the non/low response group at 12 months of age. Furthermore, we found that IL-5 and HGF were promising predictors for predicting the immunization response to hepatitis B vaccine in infants, and the combination of the two cytokines showed the best predictive efficiency, with an area under the curve (AUC) value of 0.844. Conclusion: The present study provides a theoretical basis on cytokines for developing and implementing effective immunotherapies against non/low immune response in infants born to HBsAg-positive mothers.


Subject(s)
Hepatitis B Vaccines , Hepatitis B , Infant, Newborn , Infant , Female , Humans , Hepatitis B Surface Antigens , Interleukin-5 , Cytokines , Vaccination , Immunity , Hepatocyte Growth Factor
SELECTION OF CITATIONS
SEARCH DETAIL