Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473556

ABSTRACT

This study analyzed the viscoelastic properties of asphalt binders reinforced with various fibers, such as modified asphalt binder, modified asphalt binder reinforced with lignin fibers (LFs), polyester fibers (PFs), and polypropylene fibers (PPFs), using dynamic shear rheological (DSR) testing. Then, the experiment generated data on the dynamic modulus and phase angle, which described the dynamic rheological characteristics at varying temperatures. The generalized Maxwell model was employed to select the appropriate element, and the test curve was fitted into a discrete time spectrum based on the time-temperature equivalence principle (TTSP). The master curves of the relaxation modulus and creep compliance were established to predict the relaxation and creep properties of various asphalt binders. The analysis indicated that fiber-reinforced binders offer superior resistance to high temperatures and long-term deformation, while being less sensitive to temperature and having a more significant elastic characterization. The binders reinforced with PPFs and LFs exhibited superior performance in high-temperature settings and long-term durability, respectively. On the other hand, the binder reinforced with PFs displayed exceptional high-temperature elastic properties. Additionally, based on the experimental data and corresponding discussion, it appears that the 13-element GM model is more appropriate for fitting the data.

2.
Materials (Basel) ; 16(16)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37630018

ABSTRACT

The performance of asphalt binders and asphalt mixtures can be enhanced by the inclusion of fiber. The viscoelastic characteristics of fiber-reinforced asphalt binders and their corresponding mixtures were characterized in this study. To generate fiber-reinforced asphalt samples for dynamic shear rheometer (DSR) tests, polypropylene fibers (PPFs), polyester fibers (PFs), and lignin fibers (LFs) were added into modified asphalt with a ratio of 5wt%. Indirect tensile resilience tests were conducted on the fiber-reinforced asphalt mixture with Marshall samples, which was prepared with a 6.4% of bitumen/aggregate ratio. The addition of fiber can increase the anti-rutting performance of asphalt binders, and also reduce the anti-fatigue performance of asphalt binders to varying degrees. Viscoelastic properties of the fiber-reinforced asphalt binders are highly dependent on the shape of the used fiber. The resistance of the fiber-reinforced asphalt binders to rutting at high temperatures increases with the roughness degree of the fiber's surface morphology. PPF-reinforced asphalt binders surpass the others in terms of anti-rutting capabilities. The high-temperature deformation resistance of the PPF-reinforced asphalt mixture is stronger, whereas the low-temperature crack resistance of the PF-reinforced asphalt mixture is stronger, which can be observed from the master curve of indirect tensile resilient modulus.

3.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676286

ABSTRACT

Fiber can absorb asphalt binder and therefore reinforce and stabilize the asphalt mixture structure and also prevent the asphalt from the leaking, which occurs in the process of mixing and transport. In this study, three kinds of fiber (polyester fiber, polypropylene fiber, and lignin fiber) are used to evaluate the relationship between the fiber types and mechanic performance of SMA-13 fiber asphalt mixture, which is specially designed for field tests of high-speed vehicles on pavements. The micro-surface characteristics of fiber and aggregates were studied by SEM and image analysis. Marshall stability and splitting strength were used to measure the properties of the asphalt mixture. In addition, a field test, including measures for curve-section edge, curve-section center, straight-section edge, and straight-section center, was conducted to evaluate the skid resistance of the high-speed vehicles that test field pavement. The results show that the Marshall stabilities of asphalt mixture with three kinds of fibers have been improved, whereas the stability of asphalt mixture prepared by polypropylene fiber and polyester fiber particularly increased before immersion. Among the three kinds of fiber asphalt mixtures, the polyester fiber asphalt mixture has enhanced water susceptibility. Skid resistance in the field test indicated that high skid resistance and good surface-texture depth were achieved.

SELECTION OF CITATIONS
SEARCH DETAIL