Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Foods ; 12(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37685137

ABSTRACT

Selenium-enriched rapeseed (SER) is an emerging oil seed. Roasting is beneficial in improving oil yield and promoting the release of micronutrients into SER oil, but high temperatures and dry air lead to selenium loss and fatty acid degradation in SER. To minimize the selenium loss and improve the SER oil quality, this study investigated the effects of vacuum (VC) roasting (90-170 °C for 30 min) on the SER selenium content, Maillard reaction products, oxidative stability, and physicochemical properties of SER oil, with conventional dry air (DA) roasting as the control. The results showed that the selenium loss in VC-roasted SER meals increased from 7.17 to 19.76% (90-170 °C for 30 min), which was 47.13 to 80.48% of that in DA-roasted SER meals, while no selenium was detected in the SER oils. Compared to DA roasting, VC roasting (90-170 °C for 30 min) reduced lipid oxidation products (LOPs), Maillard reaction products (MRPs), and benzo[a]pyrene contents, and increased carotenoids, unsaturated fatty acid contents, reaching a maximum oil yield of 35.58% at a lower temperature (130 °C for 30 min). Selenium contents exhibited a highly significant negative correlation with MRPs and LOPs (p ≤ 0.005). The VC roasting retarded selenium loss and improved SER oil quality compared to conventional DA roasting.

2.
Food Chem ; 413: 135616, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-36758391

ABSTRACT

High temperature is beneficial for the removal of polycyclic aromatic hydrocarbons (PAHs) from oil via steam, but leads to an increase in the content of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE). To inhibit the production of 3-MCPDE and GE during the removal of PAHs, rapeseed oil was deodorized using ethanol steam at low-temperature (140-220 °C) (L-ESD) and the content changes were studied for PAHs, 3-MCPDE and GE, and compared with conventional high-temperature water steam deodorization (H-WSD) (250 °C for 60 min). The removal rates of PAHs in L-ESD oil can be higher than those in conventional H-WSD oil, and the contents of 3-MCPDE and GE in L-ESD oil (140-180 °C for 60-100 min) ranged from 48.32 to 73.65 % and 50.49-69.90 %, respectively, in H-WSD oil due to the lower temperature of ethanol steam deodorization. These results indicate that L-ESD is beneficial in minimizing the contents of PAHs, 3-MCPDE and GE in vegetable oil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , alpha-Chlorohydrin , Temperature , Rapeseed Oil , Steam , Palm Oil , Ethanol , Distillation , Esters , Plant Oils , Water
3.
Food Res Int ; 150(Pt A): 110745, 2021 12.
Article in English | MEDLINE | ID: mdl-34865763

ABSTRACT

Fermented meat rice (FMR) is a traditional Chinese fermented food with special flavor and abundant microorganisms. Lactobacillus and Staphylococcus species have been found to be excellent strains in FMR during fermentation. However, their roles in FMR flavor formation remain yet to be elucidated. Here, we investigated the correlation between physicochemical properties and volatile flavor components, as well as the microbial community during FMR fermentation. First, we determined pH, total titratable acids (TTA), proteins, total lipids, organic acids, free amino acids (FAAs), and volatile flavor compounds (VFCs). With increasing fermentation time, inoculation with Lactobacillus plantarum C7+ Staphylococcus warneri S6 (LP + SW) accelerated the decrease in pH, increased TTA, and reduced protein and total lipid content of FMR. In addition, LP + SW inoculation resulted in significantly (P < 0.05) higher contents of ß-eudesmol, nerolidol, ethyl caproate, citronellal, lactic acid, and most FAAs (aspartic acid, glutamic acid, alanine, and lysine) in FMR compared to natural fermentation. Second, inoculated fermentation promoted the growth of Lactobacillus plantarum and/or Staphylococcus warneri and inhibited the growth of some potentially pathogenic microorganisms such as Acinetobacter and Enhydrobacter. Lactobacillus and Staphylococcus were found to be highly correlated with the physicochemical properties and VFCs (P < 0.05) of FMR as indicated by redundancy analysis (RDA) and partial least squares (PLS, VIP > 1.0) analysis. Finally, Spearman's correlation (| r | ≥ 0.7, P < 0.05) analysis of SPSS was visualized by the Cytoscape software. The findings suggest that inoculation with L. plantarum C7 and/or S. warneri S6 can significantly improve the flavor quality of FMR.


Subject(s)
Lactobacillus plantarum , Oryza , China , Meat , Staphylococcus
SELECTION OF CITATIONS
SEARCH DETAIL