Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Neural Regen Res ; 20(1): 242-252, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767489

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202501000-00032/figure1/v/2024-05-14T021156Z/r/image-tiff Human brain development is a complex process, and animal models often have significant limitations. To address this, researchers have developed pluripotent stem cell-derived three-dimensional structures, known as brain-like organoids, to more accurately model early human brain development and disease. To enable more consistent and intuitive reproduction of early brain development, in this study, we incorporated forebrain organoid culture technology into the traditional unguided method of brain organoid culture. This involved embedding organoids in matrigel for only 7 days during the rapid expansion phase of the neural epithelium and then removing them from the matrigel for further cultivation, resulting in a new type of human brain organoid system. This cerebral organoid system replicated the temporospatial characteristics of early human brain development, including neuroepithelium derivation, neural progenitor cell production and maintenance, neuron differentiation and migration, and cortical layer patterning and formation, providing more consistent and reproducible organoids for developmental modeling and toxicology testing. As a proof of concept, we applied the heavy metal cadmium to this newly improved organoid system to test whether it could be used to evaluate the neurotoxicity of environmental toxins. Brain organoids exposed to cadmium for 7 or 14 days manifested severe damage and abnormalities in their neurodevelopmental patterns, including bursts of cortical cell death and premature differentiation. Cadmium exposure caused progressive depletion of neural progenitor cells and loss of organoid integrity, accompanied by compensatory cell proliferation at ectopic locations. The convenience, flexibility, and controllability of this newly developed organoid platform make it a powerful and affordable alternative to animal models for use in neurodevelopmental, neurological, and neurotoxicological studies.

2.
Int J Mol Sci ; 25(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39273109

ABSTRACT

Plants are an important source for the discovery of novel natural growth regulators. We used activity screening to demonstrate that treatment of Nipponbare seeds with 25 µg/mL isopimaric acid significantly increased the resulting shoot length, root length, and shoot weight of rice seedlings by 11.37 ± 5.05%, 12.96 ± 7.63%, and 27.98 ± 10.88% and that it has a higher activity than Gibberellin A3 (GA3) at the same concentration. A total of 213 inbred lines of different rice lineages were screened, and we found that isopimaric acid had different growth promotional activities on rice seedlings of different varieties. After induction with 25 µg/mL isopimaric acid, 15.02% of the rice varieties tested showed increased growth, while 15.96% of the varieties showed decreased growth; the growth of the remaining 69.02% did not show any significant change from the control. In the rice varieties showing an increase in growth, the shoot length and shoot weight significantly increased, accounting for 21.88% and 31.25%. The root length and weight significantly increased, accounting for 6.25% and 3.13%. Using genome-wide association studies (GWASs), linkage disequilibrium block, and gene haplotype significance analysis, we identified single nucleotide polymorphism (SNP) signals that were significantly associated with the length and weight of shoots on chromosomes 2 and 8, respectively. After that, we obtained 17 candidate genes related to the length of shoots and 4 candidate genes related to the weight of shoots. Finally, from the gene annotation data and gene tissue-specific expression; two genes related to this isopimaric acid regulation phenotype were identified as OsASC1 (LOC_Os02g37080) on chromosome 2 and OsBUD13 (LOC_Os08g08080) on chromosome 8. Subcellular localization analysis indicated that OsASC1 was expressed in the plasma membrane and the nuclear membrane, while OsBUD13 was expressed in the nucleus. Further RT-qPCR analysis showed that the relative expression levels of the resistance gene OsASC1 and the antibody protein gene OsBUD13 decreased significantly following treatment with 25 µg/mL isopimaric acid. These results suggest that isopimaric acid may inhibit defense pathways in order to promote the growth of rice seedlings.


Subject(s)
Abietanes , Gene Expression Regulation, Plant , Genome-Wide Association Study , Oryza , Oryza/genetics , Oryza/growth & development , Oryza/drug effects , Oryza/metabolism , Gene Expression Regulation, Plant/drug effects , Polymorphism, Single Nucleotide , Seedlings/growth & development , Seedlings/genetics , Seedlings/drug effects , Quantitative Trait Loci , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism
4.
Biomedicines ; 12(8)2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39200351

ABSTRACT

Dilated cardiomyopathy (DCM) is one of the major causes of heart failure. Although significant progress has been made in elucidating the underlying mechanisms, further investigation is required for clarifying molecular diagnostic and therapeutic targets. In this study, we found that the mRNA level of protein phosphatase 2 regulatory subunit B' delta (Ppp2r5d) was altered in the peripheral blood plasma of DCM patients. Knockdown of Ppp2r5d in murine cardiomyocytes increased the intracellular levels of reactive oxygen species (ROS) and inhibited adenosine triphosphate (ATP) synthesis. In vivo knockdown of Ppp2r5d in an isoproterenol (ISO)-induced DCM mouse model aggravated the pathogenesis and ultimately led to heart failure. Mechanistically, Ppp2r5d-deficient cardiomyocytes showed an increase in phosphorylation of STAT3 at Y705 and a decrease in phosphorylation of STAT3 at S727. The elevated levels of phosphorylation at Y705 in STAT3 triggered the upregulation of interleukin 6 (IL6) expression. Moreover, the decreased phosphorylation at S727 in STAT3 disrupted mitochondrial electron transport chain function and dysregulated ATP synthesis and ROS levels. These results hereby reveal a novel role for Ppp2r5d in modulating STAT3 pathway in DCM, suggesting it as a potential target for the therapy of the disease.

5.
J Genet Genomics ; 51(8): 844-854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38575112

ABSTRACT

Pathological myocardial hypertrophy is a common early clinical manifestation of heart failure, with noncoding RNAs exerting regulatory influence. However, the molecular function of circular RNAs (circRNAs) in the progression from cardiac hypertrophy to heart failure remains unclear. To uncover functional circRNAs and identify the core circRNA signaling pathway in heart failure, we construct a global triple network (microRNA, circRNA, and mRNA) based on the competitive endogenous RNA (ceRNA) theory. We observe that cardiac hypertrophy-related circRNA (circRNA CHRC), within the ceRNA network, is down-regulated in both transverse aortic constriction mice and Ang-II--treated primary mouse cardiomyocytes. Silencing circRNA CHRC increases cross-sectional cell area, atrial natriuretic peptide, and ß-myosin heavy chain levels in primary mouse cardiomyocytes. Further screening shows that circRNA CHRC targets the miR-431-5p/KLF15 axis implicated in heart failure progression in vivo and in vitro. Immunoprecipitation with anti-Ago2-RNA confirms the interaction between circRNA CHRC and miR-431-5p, while miR-431-5p mimics reverse Klf15 activation caused by circRNA CHRC overexpression. In summary, circRNA CHRC attenuates cardiac hypertrophy via sponging miR-431-5p to maintain the normal level of Klf15 expression.


Subject(s)
Heart Failure , Kruppel-Like Transcription Factors , MicroRNAs , Myocytes, Cardiac , RNA, Circular , Signal Transduction , Animals , Humans , Male , Mice , Cardiomegaly/genetics , Cardiomegaly/pathology , Cardiomegaly/metabolism , Disease Progression , Gene Expression Regulation/genetics , Heart Failure/genetics , Heart Failure/pathology , Heart Failure/metabolism , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , RNA/genetics , RNA/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction/genetics
6.
Eur Heart J ; 45(9): 688-703, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38152853

ABSTRACT

BACKGROUND AND AIMS: Anti-hypertensive agents are one of the most frequently used drugs worldwide. However, no blood pressure-lowering strategy is superior to placebo with respect to survival in diabetic hypertensive patients. Previous findings show that Wnt co-receptors LDL receptor-related proteins 5 and 6 (LRP5/6) can directly bind to several G protein-coupled receptors (GPCRs). Because angiotensin II type 1 receptor (AT1R) is the most important GPCR in regulating hypertension, this study examines the possible mechanistic association between LRP5/6 and their binding protein Dickkopf-1 (DKK1) and activation of the AT1R and further hypothesizes that the LRP5/6-GPCR interaction may affect hypertension and potentiate cardiac impairment in the setting of diabetes. METHODS: The roles of serum DKK1 and DKK1-LRP5/6 signalling in diabetic injuries were investigated in human and diabetic mice. RESULTS: Blood pressure up-regulation positively correlated with serum DKK1 elevations in humans. Notably, LRP5/6 physically and functionally interacted with AT1R. The loss of membrane LRP5/6 caused by injection of a recombinant DKK1 protein or conditional LRP5/6 deletions resulted in AT1R activation and hypertension, as well as ß-arrestin1 activation and cardiac impairment, possibly because of multiple GPCR alterations. Importantly, unlike commonly used anti-hypertensive agents, administration of the anti-DKK1 neutralizing antibody effectively prevented diabetic cardiac impairment in mice. CONCLUSIONS: These findings establish a novel DKK1-LRP5/6-GPCR pathway in inducing diabetic injuries and may resolve the long-standing conundrum as to why elevated blood DKK1 has deleterious effects. Thus, monitoring and therapeutic elimination of blood DKK1 may be a promising strategy to attenuate diabetic injuries.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Hypertension , Receptors, LDL , Animals , Humans , Mice , Antihypertensive Agents , Diabetic Cardiomyopathies/prevention & control , Hypertension/prevention & control , Receptors, LDL/antagonists & inhibitors
7.
Int J Mol Med ; 53(2)2024 02.
Article in English | MEDLINE | ID: mdl-38063256

ABSTRACT

The Kv11.1 potassium channel encoded by the Kcnh2 gene is crucial in conducting the rapid delayed rectifier K+ current in cardiomyocytes. Homozygous mutation in Kcnh2 is embryonically lethal in humans and mice. However, the molecular signaling pathway of intrauterine fetal loss is unclear. The present study generated a Kcnh2 knockout rat based on edited rat embryonic stem cells (rESCs). Kcnh2 knockout was embryonic lethal on day 11.5 of development due to a heart configuration defect. Experiments with human embryonic heart single cells (6.5­7 weeks post­conception) suggested that potassium voltage­gated channel subfamily H member 2 (KCNH2) plays a crucial role in the development of compact cardiomyocytes. By contrast, apoptosis was found to be triggered in the homozygous embryos, which could be attributed to the failure of KCNH2 to form a complex with integrin ß1 that was essential for preventing the process of apoptosis via inhibition of forkhead box O3A. Destruction of the KCNH2/integrin ß1 complex reduced the phosphorylation level of AKT and deactivated the glycogen synthase kinase 3 ß (GSK­3ß)/ß­catenin pathway, which caused early developmental abnormalities in rats. The present work reveals a basic mechanism by which KCNH2 maintains intact embryonic heart development.


Subject(s)
ERG1 Potassium Channel , Heart Defects, Congenital , Animals , Female , Humans , Mice , Pregnancy , Rats , Embryonic Development , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/metabolism , Ether-A-Go-Go Potassium Channels/genetics , Ether-A-Go-Go Potassium Channels/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Heart Defects, Congenital/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Myocytes, Cardiac/metabolism
8.
Cell Death Discov ; 9(1): 321, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644023

ABSTRACT

Animal studies for embryotoxicity evaluation of potential therapeutics and environmental factors are complex, costly, and time-consuming. Often, studies are not of human relevance because of species differences. In the present study, we recapitulated the process of cardiomyogenesis in human induced pluripotent stem cells (hiPSCs) by modulation of the Wnt signaling pathway to identify a key cardiomyogenesis gene signature that can be applied to identify compounds and/or stress factors compromising the cardiomyogenesis process. Among the 23 tested teratogens and 16 non-teratogens, we identified three retinoids including 13-cis-retinoic acid that completely block the process of cardiomyogenesis in hiPSCs. Moreover, we have identified an early gene signature consisting of 31 genes and associated biological processes that are severely affected by the retinoids. To predict the inhibitory potential of teratogens and non-teratogens in the process of cardiomyogenesis we established the "Developmental Cardiotoxicity Index" (CDI31g) that accurately differentiates teratogens and non-teratogens to do or do not affect the differentiation of hiPSCs to functional cardiomyocytes.

9.
Biomed Pharmacother ; 165: 115275, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37541173

ABSTRACT

BACKGROUND: Pathological cardiac hypertrophy is a hallmark of various cardiovascular diseases (CVD) including chronic heart failure (HF) and an important target for the treatment of these diseases. Aberrant activation of Angiotensin II (Ang II)/AT1R signaling pathway is one of the main triggers of cardiac hypertrophy, which further gives rise to excessive inflammation that is mediated by the key transcription factor NF-κB. Resveratrol (REV) is a natural polyphenol with multiple anti-inflammatory and anti-oxidative effects, however the ability of REV in preventing Ang II-induced cardiac hypertrophy in combination with NF-κB signaling activation remains unclear. METHODS: Murine models of cardiac hypertrophy was conducted via implantation of Ang II osmotic pumps. Primary neonatal rat cardiomyocyte and heart tissues were examined to determine the effect and underlying mechanism of REV in preventing Ang II-induced cardiac hypertrophy. RESULTS: Administrations of REV significantly prevented Ang II-induced cardiac hypertrophy, as well as robustly attenuated Ang II-induced cardiac fibrosis, and cardiac dysfunction. Furthermore, REV not only directly prevented Ang II/AT1R signal transductions, but also prevented Ang II-induced expressions of pro-inflammatory cytokines and activation of NF-κB signaling pathway. CONCLUSIONS: Our study provides important new mechanistic insight into the cardioprotective effects of REV in preventing Ang II-induced cardiac hypertrophy via inhibiting adverse NF-κB signaling activation. Our findings further suggest the therapeutic potential of REV as a promising drug for the treatment of cardiac hypertrophy and heart failure.


Subject(s)
Heart Failure , NF-kappa B , Rats , Mice , Animals , NF-kappa B/metabolism , Resveratrol/adverse effects , Angiotensin II/pharmacology , Signal Transduction , Cardiomegaly/chemically induced , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Myocytes, Cardiac , Heart Failure/chemically induced , Heart Failure/drug therapy , Heart Failure/metabolism
10.
Cell Death Discov ; 8(1): 447, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335090

ABSTRACT

Significant evidence points to Strip2 being a key regulator of the differentiation processes of pluripotent embryonic stem cells. However, Strip2 mediated epigenetic regulation of embryonic differentiation and development is quite unknown. Here, we identified several interaction partners of Strip2, importantly the co-repressor molecular protein complex nucleosome remodeling deacetylase/Tripartite motif-containing 28/Histone deacetylases/Histone-lysine N-methyltransferase SETDB1 (NuRD/TRIM28/HDACs/SETDB1) histone methyltransferase, which is primarily involved in regulation of the pluripotency of embryonic stem cells and its differentiation. The complex is normally activated by binding of Krueppel-associated box zinc-finger proteins (KRAB-ZFPs) to specific DNA motifs, causing methylation of H3 to Lysin-9 residues (H3K9). Our data showed that Strip2 binds to a DNA motif (20 base pairs), like the KRAB-ZFPs. We establish that Strip2 is an epigenetic regulator of pluripotency and differentiation by modulating DNA KRAB-ZFPs as well as the NuRD/TRIM28/HDACs/SETDB1 histone methyltransferase complex.

11.
Front Genet ; 13: 892766, 2022.
Article in English | MEDLINE | ID: mdl-35832197

ABSTRACT

Normal heart development is vital for maintaining its function, and the development process is involved in complex interactions between different cell lineages. How mammalian hearts develop differently is still not fully understood. In this study, we identified several major types of cardiac cells, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), ECs/FBs, epicardial cells (EPs), and immune cells (macrophage/monocyte cluster, MACs/MONOs), based on single-cell transcriptome data from embryonic hearts of both human and mouse. Then, species-shared and species-specific marker genes were determined in the same cell type between the two species, and the genes with consistent and different expression patterns were also selected by constructing the developmental trajectories. Through a comparison of the development stage similarity of CMs, FBs, and ECs/FBs between humans and mice, it is revealed that CMs at e9.5 and e10.5 of mice are most similar to those of humans at 7 W and 9 W, respectively. Mouse FBs at e10.5, e13.5, and e14.5 are correspondingly more like the same human cells at 6, 7, and 9 W. Moreover, the e9.5-ECs/FBs of mice are most similar to that of humans at 10W. These results provide a resource for understudying cardiac cell types and the crucial markers able to trace developmental trajectories among the species, which is beneficial for finding suitable mouse models to detect human cardiac physiology and related diseases.

12.
Biochem Biophys Res Commun ; 571: 8-13, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34298338

ABSTRACT

Rats have long been an ideal model for disease research in the field of biomedicine, but the bottleneck of in vitro culture of rat embryonic stem (ES) cells hindered the wide application as genetic disease models. Here, we optimized a special medium which we named 5N-medium for rat embryonic stem cells, which improved the in vitro cells with better morphology and higher pluripotency. We then established a drug selection schedule harboring a prior selection of 12 h that achieved a higher positive selection ratio. These treatments induced at least 50% increase of homologous recombination efficiency compared with conventional 2i culture condition. Moreover, the ratio of euploid ES clones also increased by 50% with a higher germline transmission rate. Finally, we successfully knocked in a 175 kb human Bacterial Artificial Chromosome (BAC) fragment to rat ES genome through recombinase mediated cassette exchange (RMCE). Hence, we provide a promising system for generating sophisticated rat models which could be benefit for biomedical researches.


Subject(s)
Embryonic Stem Cells/cytology , Animals , Cell Proliferation , Cells, Cultured , Models, Animal , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley
13.
Front Cardiovasc Med ; 8: 658900, 2021.
Article in English | MEDLINE | ID: mdl-33987212

ABSTRACT

The cardiovascular toxicity of anticancer drugs promotes the development of cardiovascular diseases. Therefore, cardiovascular toxicity is an important safety issue that must be considered when developing medications and therapeutic applications to treat cancer. Among anticancer drugs, members of the anthracycline family, such as doxorubicin, daunorubicin and mitoxantrone, are known to cause cardiotoxicity and even heart failure. Using human-induced pluripotent stem cell-derived cardiomyocytes in combination with "Omic" technologies, we identified several cardiotoxicity mechanisms and signal transduction pathways. Moreover, these drugs acted as cardiovascular toxicants through a syndrome of mechanisms, including epigenetic ones. Herein, we discuss the main cardiovascular toxicity mechanisms, with an emphasis on those associated with reactive oxygen species and mitochondria that contribute to cardiotoxic epigenetic modifications. We also discuss how to mitigate the cardiotoxic effects of anticancer drugs using available pharmaceutical "weapons."

14.
Cell Res ; 31(9): 951-964, 2021 09.
Article in English | MEDLINE | ID: mdl-33824424

ABSTRACT

As an excitatory transmitter system, the glutamatergic transmitter system controls excitability and conductivity of neurons. Since both cardiomyocytes and neurons are excitable cells, we hypothesized that cardiomyocytes may also be regulated by a similar system. Here, we have demonstrated that atrial cardiomyocytes have an intrinsic glutamatergic transmitter system, which regulates the generation and propagation of action potentials. First, there are abundant vesicles containing glutamate beneath the plasma membrane of rat atrial cardiomyocytes. Second, rat atrial cardiomyocytes express key elements of the glutamatergic transmitter system, such as the glutamate metabolic enzyme, ionotropic glutamate receptors (iGluRs), and glutamate transporters. Third, iGluR agonists evoke iGluR-gated currents and decrease the threshold of electrical excitability in rat atrial cardiomyocytes. Fourth, iGluR antagonists strikingly attenuate the conduction velocity of electrical impulses in rat atrial myocardium both in vitro and in vivo. Knockdown of GRIA3 or GRIN1, two highly expressed iGluR subtypes in atria, drastically decreased the excitatory firing rate and slowed down the electrical conduction velocity in cultured human induced pluripotent stem cell (iPSC)-derived atrial cardiomyocyte monolayers. Finally, iGluR antagonists effectively prevent and terminate atrial fibrillation in a rat isolated heart model. In addition, the key elements of the glutamatergic transmitter system are also present and show electrophysiological functions in human atrial cardiomyocytes. In conclusion, our data reveal an intrinsic glutamatergic transmitter system directly modulating excitability and conductivity of atrial cardiomyocytes through controlling iGluR-gated currents. Manipulation of this system may open potential new avenues for therapeutic intervention of cardiac arrhythmias.


Subject(s)
Atrial Fibrillation , Induced Pluripotent Stem Cells , Action Potentials , Animals , Heart Atria , Humans , Myocytes, Cardiac , Rats
15.
Life (Basel) ; 11(5)2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33919335

ABSTRACT

In humans, the maternal endometrium participates in the physical and physiological interaction with the blastocyst to begin implantation. A bidirectional crosstalk is critical for normal implantation and then a successful pregnancy. While several studies have used animal models or cell lines to study this step, little knowledge was acquired to address the role of endometrial cells in humans. Here, we analyzed single-cell sequencing data from a previous study including 24 non-coculture endometrial stromal cells (EmSCs) and 57 EmSCs after coculture with embryos. We further explored the transcriptomic changes in EmSCs and their interactions with trophoblast cells after coculture. Differentially expressed gene (DEG) analysis showed 1783 upregulated genes and 569 downregulated genes in the cocultured embryos. Weight gene coexpression network and gene ontology analysis of these DEGs showed a higher expression of RAMP1, LTBP1, and LRP1 in EmSCs after coculture, indicating the enrichment of biological processes in blood vessel development and female pregnancy. These data imply that EmSCs start blood vessel development at the implantation stage. Compared with endometrium data in vivo at the implantation window, key pathways including epithelial cell development and oxygen response were involved at this stage. Further analysis using CellphoneDB shed light on the interactions between EmSCs and embryonic trophoblasts, suggesting the important role of integrins and fibroblast growth factor pathways during implantation. Taken together, our work reveals the synchronization signaling and pathways happening at the implantation stage involving the acquisition of receptivity in EmSCs and the interaction between EmSCs and trophoblast cells.

16.
Protein Cell ; 12(7): 545-556, 2021 07.
Article in English | MEDLINE | ID: mdl-33548033

ABSTRACT

Activation of the heart normally begins in the sinoatrial node (SAN). Electrical impulses spontaneously released by SAN pacemaker cells (SANPCs) trigger the contraction of the heart. However, the cellular nature of SANPCs remains controversial. Here, we report that SANPCs exhibit glutamatergic neuron-like properties. By comparing the single-cell transcriptome of SANPCs with that of cells from primary visual cortex in mouse, we found that SANPCs co-clustered with cortical neurons. Tissue and cellular imaging confirmed that SANPCs contained key elements of glutamatergic neurotransmitter system, expressing genes encoding glutamate synthesis pathway (Gls), ionotropic and metabotropic glutamate receptors (Grina, Gria3, Grm1 and Grm5), and glutamate transporters (Slc17a7). SANPCs highly expressed cell markers of glutamatergic neurons (Snap25 and Slc17a7), whereas Gad1, a marker of GABAergic neurons, was negative. Functional studies revealed that inhibition of glutamate receptors or transporters reduced spontaneous pacing frequency of isolated SAN tissues and spontaneous Ca2+ transients frequency in single SANPC. Collectively, our work suggests that SANPCs share dominant biological properties with glutamatergic neurons, and the glutamatergic neurotransmitter system may act as an intrinsic regulation module of heart rhythm, which provides a potential intervention target for pacemaker cell-associated arrhythmias.


Subject(s)
Biological Clocks/genetics , Nerve Tissue Proteins/genetics , Neurons/metabolism , Primary Visual Cortex/metabolism , Sinoatrial Node/metabolism , Transcriptome , Action Potentials/physiology , Animals , Astrocytes/cytology , Astrocytes/metabolism , Calcium/metabolism , Carrier Proteins/classification , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Profiling , Gene Expression Regulation , Glutamic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/cytology , Microglia/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/classification , Nerve Tissue Proteins/metabolism , Neurons/cytology , Primary Visual Cortex/cytology , Receptors, Ionotropic Glutamate/classification , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/classification , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Single-Cell Analysis , Sinoatrial Node/cytology , Tissue Culture Techniques , gamma-Aminobutyric Acid/metabolism
17.
Thromb J ; 19(1): 8, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568153

ABSTRACT

BACKGROUND: The progression of coagulation in COVID-19 patients with confirmed discharge status and the combination of autopsy with complete hemostasis parameters have not been well studied. OBJECTIVE: To clarify the thrombotic phenomena and hemostasis state in COVID-19 patients based on epidemiological statistics combining autopsy and statistical analysis. METHODS: Using autopsy results from 9 patients with COVID-19 pneumonia and the medical records of 407 patients, including 39 deceased patients whose discharge status was certain, time-sequential changes in 11 relevant indices within mild, severe and critical infection throughout hospitalization according to the Chinese National Health Commission (NHC) guidelines were evaluated. Statistical tools were applied to calculate the importance of 11 indices and the correlation between those indices and the severity of COVID-19. RESULTS: At the beginning of hospitalization, platelet (PLT) counts were significantly reduced in critically ill patients compared with severely or mildly ill patients. Blood glucose (GLU), prothrombin time (PT), activated partial thromboplastin time (APTT), and D-dimer levels in critical patients were increased compared with mild and severe patients during the entire admission period. The International Society on Thrombosis and Haemostasis (ISTH) disseminated intravascular coagulation (DIC) score was also high in critical patients. In the relatively late stage of nonsurvivors, the temporal changes in PLT count, PT, and D-dimer levels were significantly different from those in survivors. A random forest model indicated that the most important feature was PT followed by D-dimer, indicating their positive associations with disease severity. Autopsy of deceased patients fulfilling diagnostic criteria for DIC revealed microthromboses in multiple organs. CONCLUSIONS: Combining autopsy data, time-sequential changes and statistical methods to explore hemostasis-relevant indices among the different severities of the disease helps guide therapy and detect prognosis in COVID-19 infection.

18.
Stem Cells ; 39(4): 443-457, 2021 04.
Article in English | MEDLINE | ID: mdl-33426760

ABSTRACT

ERG1, a potassium ion channel, is essential for cardiac action potential repolarization phase. However, the role of ERG1 for normal development of the heart is poorly understood. Using the rat embryonic stem cells (rESCs) model, we show that ERG1 is crucial in cardiomyocyte lineage commitment via interactions with Integrin ß1. In the mesoderm phase of rESCs, the interaction of ERG1 with Integrin ß1 can activate the AKT pathway by recruiting and phosphorylating PI3K p85 and focal adhesion kinase (FAK) to further phosphorylate AKT. Activation of AKT pathway promotes cardiomyocyte differentiation through two different mechanisms, (a) through phosphorylation of GSK3ß to upregulate the expression levels of ß-catenin and Gata4; (b) through promotion of nuclear translocation of nuclear factor-κB by phosphorylating IKKß to inhibit cell apoptosis, which occurs due to increased Bcl2 expression. Our study provides solid evidence for a novel role of ERG1 on differentiation of rESCs into cardiomyocytes.


Subject(s)
ERG1 Potassium Channel/genetics , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Integrin beta1/genetics , Myocytes, Cardiac/metabolism , Proto-Oncogene Proteins c-akt/genetics , Animals , Apoptosis/genetics , Cell Differentiation , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , ERG1 Potassium Channel/metabolism , Embryo, Mammalian , Embryonic Stem Cells/cytology , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Integrin beta1/metabolism , Myocytes, Cardiac/cytology , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Signal Transduction , beta Catenin/genetics , beta Catenin/metabolism
19.
Biochem Mol Biol Educ ; 49(2): 189-197, 2021 03.
Article in English | MEDLINE | ID: mdl-32881259

ABSTRACT

In 2018, to help undergraduate medical students strengthen their self-learning and scientific research skills, we introduced an instructional model that combined literature-based learning with experimental design. We tested this model on the molecular biology class at Tongji University. In the first step of the model, a topic is chosen, and students find, read, and evaluate scientific papers in groups and deliver presentations. In the second step, they design scientific experiments in groups and discuss their proposed experiments in class, which is to be followed by further experimental verification in the lab course. This entire activity was given 20% weightage in the final score. The model led to better student-centered teaching and self-directed learning according to quantitative and qualitative assessment. Students showed great interest in literature and research. They enjoyed group work and gained experience in organization and presentation. Apart from a significant increase in final score, assessment data from students indicated that they were satisfied with this teaching model and considered it a positive experience. Looking at the positive impact of the literature-based learning and experiment design model, we support its continued use for teaching molecular biology to undergraduate medical students.


Subject(s)
Education, Medical, Undergraduate , Learning , Models, Educational , Molecular Biology/education , Students, Medical , Universities , Humans
20.
Cell Prolif ; 54(2): e12962, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33263944

ABSTRACT

OBJECTIVES: Myocardial dysfunction is a significant manifestation in sepsis, which results in high mortality. Even Kcnh2 has been hinted to associate with the pathological process, its involved signalling is still elusive. MATERIALS AND METHODS: The caecal ligation puncture (CLP) surgery or lipopolysaccharide (LPS) injection was performed to induce septic cardiac dysfunction. Western blotting was used to determine KCNH2 expression. Cardiac function was examined by echocardiography 6 hours after CLP and LPS injection in Kcnh2 knockout (Kcnh2+/- ) and NS1643 injection rats (n ≥ 6/group). Survival was monitored following CLP-induced sepsis (n ≥ 8/group). RESULTS: Sepsis could downregulate KCNH2 level in the rat heart, as well as in LPS-stimulated cardiomyocytes but not cardiac fibroblast. Defect of Kcnh2 (Kcnh2+/- ) significantly aggravated septic cardiac dysfunction, exacerbated tissue damage and increased apoptosis under LPS challenge. Fractional shortening and ejection fraction values were significantly decreased in Kcnh2+/- group than Kcnh2+/+ group. Survival outcome in Kcnh2+/- septic rats was markedly deteriorated, compared with Kcnh2+/+ rats. Activated Kcnh2 with NS1643, however, resulted in opposite effects. Lack of Kcnh2 caused inhibition of FAK/AKT signalling, reflecting in an upregulation for FOXO3A and its downstream targets, which eventually induced cardiomyocyte apoptosis and heart tissue damage. Either activation of AKT by activator or knockdown of FOXO3A with si-RNA remarkably attenuated the pathological manifestations that Kcnh2 defect mediated. CONCLUSION: Kcnh2 plays a protection role in sepsis-induced cardiac dysfunction (SCID) via regulating FAK/AKT-FOXO3A to block LPS-induced myocardium apoptosis, indicating a potential effect of the potassium channels in pathophysiology of SCID.


Subject(s)
ERG1 Potassium Channel/metabolism , Heart Diseases/etiology , Sepsis/pathology , Animals , Apoptosis/drug effects , Cresols/pharmacology , Down-Regulation/drug effects , ERG1 Potassium Channel/genetics , Focal Adhesion Kinase 1/metabolism , Forkhead Box Protein O3/antagonists & inhibitors , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Heart Diseases/mortality , Heart Diseases/veterinary , Lipopolysaccharides/pharmacology , Male , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Phenylurea Compounds/pharmacology , Proto-Oncogene Proteins c-akt/agonists , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Sepsis/mortality , Sepsis/veterinary , Signal Transduction/drug effects , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL