Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Heliyon ; 10(8): e29126, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628722

ABSTRACT

Background: Therapies targeting PD1/PD-L1 pathway have revolutionized the treatment of lung cancer. However, anti-PD1/PD-L1 therapies have proven beneficial for only a select group of lung adenocarcinoma (LUAD) patients and generally do not work for immuno-cold tumors characterized by a lack of immune cell infiltration. Identifying novel biomarkers is vital to broad therapeutic options for LUAD patients with no response to anti-PD1/PD-L1 immunotherapies. Methods: Our study has developed a novel strategy to identify a promising biomarker that addresses the limitations of anti-PD1/PD-L1 immunotherapy in treating immunological cold tumors. We exacted LUAD RNA-seq data from the Cancer Genome Atlas database (TCGA). Using several machine learning methods, we identified the candidate biomarker. Based on the expression level of PD-L1 and the identified biomarker, samples were categorized into four groups. We further used ESTIMATE, ssGSEA, and CIBERSORT algorithms to calculate the immune infiltration level of each group. The results were validated in three independent bulk datasets and one scRNA-seq dataset. Immunohistochemistry (IHC) assessments were performed in clinical samples to further evaluate the coexpression of CNKSR1 and PD-L1, and to compare CD8 + T cell infiltration among groups. Results: After comprehensive analyses, CNKSR1 was identified as a novel promising biomarker for immuno-cold LUAD. CNKSR1 mRNA expression levels exhibited a negative correlation with both PD-L1 mRNA expression and the extent of immune cell infiltration in LUAD. Besides, in contrast to the significant association between the expression of PD-L1 and the majority of other well-established or widely studied immune checkpoint molecules, a mutually exclusive expression pattern is observed between CNKSR1 and these molecules. The aforementioned results were consistent in validation datasets. The prognostic model built based on the CNKSR1 coexpression module also showed robust predictive performance. Additionally, IHC assessments have confirmed that the coexpression of CNKSR1 and PD-L1 is rare in LUAD samples. Notably, LUADs in the high-CNKSR1 group, characterized by high CNKSR1 but low PD- L1 expression, demonstrated reduced infiltration of CD8+ T cells. Conclusions: In summary, CNKSR1 emerges as a promising biomarker for immune-cold LUADs, and the study into CNKSR1 modulating T-cell infiltration may lead to the identification of compensatory molecules to enhance the effectiveness of current immunotherapy for LUAD.

2.
ACS Omega ; 9(15): 16976-16991, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38645368

ABSTRACT

The paper focuses on deep oil and gas resources in the Bayingobi Formation of Guaizihu Sag in the Yin'e Basin. Previous studies overlooked the differences between the pores and throats, mainly focusing on pore analysis. This work aims to analyze the pore structure and petrophysical properties of the reservoir using various methods. The study utilized the constant velocity mercury intrusion method to quantify pores and throats separately. Scanning electron microscopy and casting thin section techniques characterize the pore and throat morphology. The analysis compares the pore structures in reservoirs with different petrophysical properties. Additionally, pore and throat types are classified based on fractal dimensions, and factors influencing their development are discussed. Results reveal feldspar lithic sandstone as the predominant rock type with a low compositional maturity. The sandstone reservoirs exhibit low porosity (10.23%) and ultralow permeability (0.99 mD). Primary reservoir pore spaces include intergranular pores, dissolution pores, and microfractures. Pore radius averages at 195.32 µm, while throat radius is 3.76 µm. Pore structures are categorized as micropore small-throat, small-pore small-throat, and large-pore coarse-throat types. The study area generally exhibits a high pore-to-throat ratio, impacting reservoir petrophysical properties significantly. Pore development is primarily influenced by early diagenesis, organic acid dissolution, and hydrocarbon filling. Weak compaction and cementation transformations provide a material and spatial basis for the subsequent dissolution. The presence of thick organic-rich mudstone above and below the reservoir contributes to organic acid dissolution and hydrocarbon filling.

3.
Front Neurol ; 15: 1343025, 2024.
Article in English | MEDLINE | ID: mdl-38327621

ABSTRACT

Background: Distal arthrogryposis type 5D (DA5D) represents a subtype of distal arthrogryposis (DA) characterized by congenital joint contractures in the distal extremities. DA5D is inherited in a rare autosomal recessive manner and is associated with the ECEL1 gene. In this report, we describe a case of an infant with bilateral knee contractures and ptosis, caused by a novel compound heterozygous mutation of ECEL1. Case presentation: We conducted DNA extraction, whole-exome sequencing analysis, and mutation analysis of ECEL1 to obtain genetic data on the patient. We subsequently analyzed the patient's clinical and genetic data. The proband was a 6 months-old male infant who presented with significant bilateral knee contracture disorders and bilateral ptosis. MRI demonstrated cartilage degradation in knee joint. Whole-exome sequencing of the patient's DNA revealed a compound heterozygous mutation of c.2152-15C>A and c.110_155del in ECEL1. Analysis with the MutationTaster application indicated that c.110_155del was pathogenic (probability = 1), causing frameshift mutations affecting 151 amino acids (p.F37Cfs*151). The truncated protein lost the substructure of a transmembranous site based on the predicted protein crystal structure AF-O95672-F1. The variant of c.2152-15C>A of ECEL1 was also predicted to be disease-causing (probability = 0.98) as it impaired the methylation of ECEL1 serving as an H3K27me3 modification site, which led to the dysfunction of the second topological domain. Therefore, we concluded that the compound heterozygous mutation caused the pathogenic phenotype of this proband. Conclusion: The present case highlights the usefulness of molecular genetic screening in diagnosing unexpected joint disorder. Identification of novel mutations in the ECEL1 gene broadens the mutation spectrum of this gene and adds to the genotype-phenotype map of DA5D. Furthermore, rapid whole-exome sequencing analysis enabled timely diagnosis of this rare disease, facilitating appropriate treatment and scheduled follow-up to improve clinical outcomes.

4.
Clin Cancer Res ; 30(4): 865-876, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38060213

ABSTRACT

PURPOSE: The abundance and biological contribution of cancer-associated fibroblasts (CAF) in glioblastoma (GBM) are poorly understood. Here, we aim to uncover its molecular signature, cellular roles, and potential tumorigenesis implications. EXPERIMENTAL DESIGN: We first applied single-cell RNA sequencing (RNA-seq) and bioinformatics analysis to identify and characterize stromal cells with CAF transcriptomic features in human GBM tumors. Then, we performed functional enrichment analysis and in vitro assays to investigate their interactions with malignant GBM cells. RESULTS: We found that CAF abundance was low but significantly correlated with tumor grade, poor clinical outcome, and activation of extracellular matrix remodeling using three large cohorts containing bulk RNA-seq data and clinical information. Proteomic analysis of a GBM-derived CAF line and its secretome revealed fibronectin (FN1) as a critical candidate factor mediating CAF functions. This was validated using in vitro cellular models, which demonstrated that CAF-conditioned media and recombinant FN1 could facilitate the migration and invasion of GBM cells. In addition, we showed that CAFs were more abundant in the mesenchymal-like state (or subtype) than in other states of GBMs. Interestingly, cell lines resembling the proneural state responded to the CAF signaling better for the migratory and invasive phenotypes. CONCLUSIONS: Overall, this study characterized the molecular features and functional impacts of CAFs in GBM, alluding to novel cell interactions mediated by CAFs in the GBM microenvironment.


Subject(s)
Cancer-Associated Fibroblasts , Glioblastoma , Humans , Cancer-Associated Fibroblasts/metabolism , Glioblastoma/pathology , Cell Line, Tumor , Proteomics , Cell Movement/genetics , Tumor Microenvironment/genetics , Fibroblasts/metabolism
5.
World J Clin Cases ; 11(26): 6268-6273, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37731559

ABSTRACT

BACKGROUND: Bronchial Dieulafoy's disease (BDD) is characterized by the erosion of an anomalous artery in the submucosa of the bronchus. The etiology of pediatric BDD is mainly congenital dysplasia of bronchus and pulmonary arteries, which is different from chronic inflammatory injury of the airway in adult patients. The internal thoracic artery, subclavian artery, and intercostal artery are known to be involved in the blood supply to the BDD lesion in children. CASE SUMMARY: We report a case of BDD in a 4-year-old boy with recurrent hemoptysis for one year. Selective angiography showed a dilated right bronchial artery, and anastomosis of its branches with the right lower pulmonary vascular network. Bronchoscopy showed nodular protrusion of the bronchial mucosa with a local scar. Selective embolization of the bronchial artery was performed to stop bleeding. One month after the first intervention, the symptoms of hemoptysis recurred. A computed tomography angiogram (CTA) showed another tortuous and dilated feeding artery in the right lower lung, which was an abnormal ascending branch of the inferior phrenic artery (IPA). The results of angiography were consistent with the CTA findings. The IPA was found to be another main supplying artery, which was not considered during the first intervention. Finally, the IPA was also treated by microsphere embolization combined with coil interventional closure. During the one-year follow-up, the patient never experienced hemoptysis. CONCLUSION: The supplying arteries of the bleeding lesion in children with BDD may originate from multiple different aortopulmonary collateral arteries, and the IPA should be considered to reduce missed diagnosis. CTA is a noninvasive radiological examination for the screening of suspected vessels, which shows a high coincidence with angiography, and can serve as the first choice for the diagnosis of BDD.

6.
Front Med (Lausanne) ; 10: 1157042, 2023.
Article in English | MEDLINE | ID: mdl-37228400

ABSTRACT

Background: Congenital heart disease (CHD) represents the most widespread congenital birth defect among neonates worldwide, leading to substantial expenses and contributing significantly to premature death caused by birth defects. Despite the significance of CHD, research on its etiology remains limited and has failed to provide substantial evidence for the molecular basis of the disease. With the advancement of next-generation sequencing (NGS), genetic screening has become increasingly accessible, offering a greater capability for identifying potential genetic variants associated with CHD. Case presentation: Exome sequencing and variant analysis of TMEM260 were performed to obtain genetic data, and clinical characteristics were determined. A complex and severe form of CHD, comprising a persistent truncus arteriosus type I, ventricular septal defect, right aortic arch, as well as critical neurodevelopmental delay and neurological dysfunction, was observed in a patient. This proband presented global muscle hypotonia and a significant delay in gross and fine motor development. Cranial computed tomography scanning showed the presence of bilateral apical, occipital, and temporal subdural effusions; slightly wider bilateral lateral ventricles and annular cisterns; and bilateral cerebral hemispheric parenchyma atrophy. Upon genetic analysis of the patient, a novel homozygous mutation was identified in the TMEM260 gene. The mutation, c.1336_1339DEL, was found to be homozygous and resulted in a frameshift mutation, causing a p.L447Vfs*9 amino acid change. This mutation led to the deletion of a TCTC sequence from positions 1336 to 1339 in the TMEM260 gene, changing leucine to valine at amino acid 447 and introducing a stop codon after the ninth amino acid. This structural deletion in the TMEM260 protein resulted in the loss of gene function. Conclusion: This case report presents a newly discovered variant site in the TMEM260 gene and reinforces the relationship between TMEM260 molecular function and differentiation of mesoderm and ectoderm. Furthermore, our findings broaden the spectrum of variants in the TMEM260 gene and contribute to advancing the genetic understanding of CHD.

7.
Exp Mol Med ; 55(6): 1145-1158, 2023 06.
Article in English | MEDLINE | ID: mdl-37258572

ABSTRACT

Aberrant glucose metabolism is a characteristic of bladder cancer. Hyperglycemia contributes to the development and progression of bladder cancer. However, the underlying mechanism by which hyperglycemia promotes the aggressiveness of cancers, especially bladder cancer, is still incompletely understood. N6-methyladenosine (m6A) modification is a kind of methylation modification occurring at the N6 position of adenosine that is important for the pathogenesis of urological tumors. Recently, it was found that the m6A reader YTHDC1 is regulated by high-glucose conditions. In our study, we revealed that YTHDC1 is not only regulated by high-glucose conditions but is also downregulated in bladder cancer tissue and associated with the prognosis of cancer. We also showed that YTHDC1 suppresses the malignant progression of and the glycolytic process in bladder cancer cells in an m6A-dependent manner and determined that this effect is partially mediated by GLUT3. Moreover, GLUT3 was found to destabilize YTHDC1 by upregulating RNF183 expression. In summary, we identified a novel YTHDC1/GLUT3/RNF183 feedback loop that regulates disease progression and glucose metabolism in bladder cancer. Collectively, this study provides new insight regarding the pathogenesis of bladder cancer under hyperglycemic conditions and might reveal ideal candidates for the development of drugs for bladder cancer.


Subject(s)
Hyperglycemia , Urinary Bladder Neoplasms , Humans , Feedback , Glucose/metabolism , Glucose Transporter Type 3 , Hyperglycemia/complications , Nerve Tissue Proteins/metabolism , RNA Splicing Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , Urinary Bladder Neoplasms/pathology
8.
Oncogene ; 42(13): 952-966, 2023 03.
Article in English | MEDLINE | ID: mdl-36732658

ABSTRACT

Despite the promise of targeted tyrosine kinase inhibitors (TKIs), such as sunitinib, in the extension of survival time in patients with clear cell renal cell carcinoma (ccRCC) progression or metastasis, the patients eventually succumb to inevitable drug resistance. Protein degradation executed by the ubiquitin-dependent proteasome system played an important role in determining the sensitivity of ccRCC to sunitinib. Here, we applied the bioinformatic analysis to identify that E3 ligase RBCK1 was elevated in the sunitinib-resistant renal cancer cell lines or patient specimens. The subsequent in vitro or in vivo studies demonstrated that RBCK1 contributed to decreasing the sensitivity of ccRCC to sunitinib. Then, we showed that inhibition of RBCK1 inactivated the AKT and MAPK signaling pathways, which might be one of the main reasons why RBCK1 induces sunitinib resistance in ccRCC cells. Mechanistically, our results indicated that RBCK1 promotes the degradation of ANKRD35 and that ANKRD35 destabilizes MITD1 by binding with SUMO2 in ccRCC cells. In addition, we showed that the RBCK1-ANKRD35-MITD1-ANXA1 axis regulates the phosphorylation of AKT and ERK and contributes to the dysregulation of sunitinib in ccRCC cells. Therefore, we identified a novel mechanism for regulating the sensitivity of sunitinib in ccRCC. Therefore, we elucidated a novel mechanism by which RBCK1 regulates sunitinib sensitivity in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Sunitinib/pharmacology , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Ubiquitin-Protein Ligases/genetics , Proto-Oncogene Proteins c-akt/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Cell Line, Tumor , Transcription Factors/metabolism , Membrane Proteins , Microtubule-Associated Proteins
9.
Front Immunol ; 13: 1030097, 2022.
Article in English | MEDLINE | ID: mdl-36505448

ABSTRACT

Programmed cell death (PCD) refers to a molecularly regulated form of cell death that functions as an essential anticancer defense mechanism and serves as a target of anticancer therapies. Multiple types of PCD comprehensively regulate tumorigenesis and tumor progression and metastasis. However, a systemic exploration of the multiple types of PCD in cancers, especially bladder cancer, is lacking. In this study, we evaluated the expression pattern of genes associated with multiple types of PCD in bladder cancer using the "ssGSEA" method and conceptualized the multiple types of PCD as being collectively involved in "Pan-PCD". Based on the differentially expressed genes related to Pan-PCD, we developed a Pan-PCD-related prognostic signature (PPRPS) to predict patient prognosis via univariate and multivariate Cox regression analysis. The PPRPS is an independent prognostic factor, and the AUC (Area Under Curve) for 3-year overall survival was 0.748. Combined with age and stage, PPRPS displayed excellent predictive ability. Based on the PPRPS, higher levels of immune cell infiltration, tumor microenvironment, and immune checkpoint molecules were observed in the high-PPRPS group. Furthermore, PPRPS enabled accurate risk prediction for metastatic urothelial carcinoma after anti-PD-L1 monoclonal antibody treatment. Patients in the high-PPRPS group had poor prognoses. Docetaxel, staurosporine, and luminespib were identified as potentially effective drugs for high-PPRPS bladder cancer patients. In summary, we developed the Pan-PCD signature to improve the accuracy of bladder cancer prognostic predictions and to provide a novel classification method to guide treatment selection.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Prognosis , Apoptosis , Computational Biology , Tumor Microenvironment/genetics
10.
J Clin Invest ; 132(22)2022 11 15.
Article in English | MEDLINE | ID: mdl-36377656

ABSTRACT

Cancer immunotherapy targeting the TIGIT/PVR pathway is currently facing challenges. KIR2DL5, a member of the human killer cell, immunoglobulin-like receptor (KIR) family, has recently been identified as another binding partner for PVR. The biology and therapeutic potential of the KIR2DL5/PVR pathway are largely unknown. Here we report that KIR2DL5 was predominantly expressed on human NK cells with mature phenotype and cytolytic function and that it bound to PVR without competition with the other 3 known PVR receptors. The interaction between KIR2DL5 on NK cells and PVR on target cells induced inhibitory synapse formation, whereas new monoclonal antibodies blocking the KIR2DL5-PVR interaction robustly augmented the NK cytotoxicity against PVR+ human tumors. Mechanistically, both intracellular ITIM and ITSM of KIR2DL5 underwent tyrosine phosphorylation after engagement, which was essential for KIR2DL5-mediated NK suppression by recruiting SHP-1 and/or SHP-2. Subsequently, ITIM/SHP-1/SHP-2 and ITSM/SHP-1 downregulated the downstream Vav1/ERK1/2/p90RSK/NF-κB signaling. KIR2DL5+ immune cells infiltrated in various types of PVR+ human cancers. Markedly, the KIR2DL5 blockade reduced tumor growth and improved overall survival across multiple NK cell-based humanized tumor models. Thus, our results revealed functional mechanisms of KIR2DL5-mediated NK cell immune evasion, demonstrated blockade of the KIR2DL5/PVR axis as a therapy for human cancers, and provided an underlying mechanism for the clinical failure of anti-TIGIT therapies.


Subject(s)
Killer Cells, Natural , Neoplasms , Humans , Signal Transduction , Phosphorylation , Neoplasms/therapy , Neoplasms/metabolism
11.
Theranostics ; 12(16): 7009-7031, 2022.
Article in English | MEDLINE | ID: mdl-36276651

ABSTRACT

Rationale: Chronic pressure overload is a major trigger of cardiac pathological hypertrophy that eventually leads to heart disease and heart failure. Understanding the mechanisms governing hypertrophy is the key to develop therapeutic strategies for heart diseases. Methods: We built chronic pressure overload mice model by abdominal aortic constriction (AAC) to explore the features of Yes-associated protein 1 (YAP1). Then AAV-cTNT-Cre was applied to Yap1F/F mice to induce mosaic depletion of YAP1. Myh6CreERT2; H11CAG-LSL-YAP1 mice were involved to establish YAP1 overexpression model by Tomaxifen injection. ATAC-seq and bioChIP-seq were used to explore the potential targets of YAP1, which were verified by a series of luciferase reporter assays. Dnm1l and Mfn1 were re-expressed in AAC mice by AAV-cTNT-Dnm1l and AAV-cTNT-Mfn1. Finally, Verteprofin was used to inhibit YAP1 to rescue cardiac hypertrophy. Results: We found that pathological hypertrophy was accompanied with the activation of YAP1. Cardiomyocyte-specific deletion of Yap1 attenuated AAC-induced hypertrophy. Overexpression of YAP1 was sufficient to phenocopy AAC-induced hypertrophy. YAP1 activation resulted in the perturbation of mitochondria ultrastructure and function, which was associated with the repression of mitochondria dynamics regulators Dnm1l and Mfn1. Mitochondrial-related genes Dnm1l and Mfn1, are significantly targeted by TEAD1/YAP complex. Overexpression of Dnm1l and Mfn1 synergistically rescued YAP1-induced mitochondrial damages and cardiac hypertrophy. Pharmacological repression of YAP1 by verteporfin attenuated mitochondrial damages and pathological hypertrophy in AAC-treated mice. Interestingly, YAP1-induced mitochondria damages also led to increased reactive oxidative species, DNA damages, and the suppression of cardiomyocyte proliferation. Conclusion: Together, these data uncovered YAP signaling as a therapeutic target for pressure overload-induced heart diseases and cautioned the efforts to induce cardiomyocyte regeneration by activating YAP.


Subject(s)
Myocytes, Cardiac , Organelle Biogenesis , YAP-Signaling Proteins , Animals , Mice , Cardiomegaly/metabolism , Myocytes, Cardiac/metabolism , Stress, Mechanical , Verteporfin/pharmacology , YAP-Signaling Proteins/genetics
12.
J Exp Clin Cancer Res ; 41(1): 250, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35974388

ABSTRACT

BACKGROUND: Tyrosine kinase inhibitors (TKIs) such as sunitinib are multitarget antiangiogenic agents in clear cell renal cell carcinoma (ccRCC). They are widely used in the treatment of advanced/metastatic renal cancer. However, resistance to TKIs is common in the clinic, particularly after long-term treatment. YTHDC1 is the main nuclear reader protein that binds with m6A to regulate the splicing, export and stability of mRNA. However, the specific role and corresponding mechanism of YTHDC1 in renal cancer cells are still unclear. METHODS: The Cancer Genome Atlas (TCGA) dataset was used to study the expression of YTHDC1 in ccRCC. Cell counting kit-8 (CCK-8), wound healing, Transwell and xenograft assays were applied to explore the biological function of YTHDC1 in ccRCC. Western blot, quantitative real time PCR (RT‒qPCR), RNA immunoprecipitation PCR (RIP-qPCR), methylated RIP-qPCR (MeRIP-qPCR) and RNA sequencing (RNA-seq) analyses were applied to study the YY1/HDAC2/YTHDC1/ANXA1 axis in renal cancer cells. The CCK-8 assay and xenograft assay were used to study the role of YTHDC1 in determining the sensitivity of ccRCC to sunitinib. RESULTS: Our results demonstrated that YTHDC1 is downregulated in ccRCC tissues compared with normal tissues. Low expression of YTHDC1 is associated with a poor prognosis in patients with ccRCC. Subsequently, we showed that YTHDC1 inhibits the progression of renal cancer cells via downregulation of the ANXA1/MAPK pathways. Moreover, we also showed that the YTHDC1/ANXA1 axis modulates the sensitivity of tyrosine kinase inhibitors. We then revealed that HDAC2 inhibitors resensitize ccRCC to tyrosine kinase inhibitors through the YY1/HDAC2 complex. We have identified a novel YY1/HDAC2/YTHDC1/ANXA1 axis modulating the progression and chemosensitivity of ccRCC. CONCLUSION: We identified a novel YY1/HDAC2/YTHDC1/ANXA1 axis modulating the progression and chemosensitivity of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Nerve Tissue Proteins , RNA Splicing Factors , Annexin A1/genetics , Annexin A1/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Histone Deacetylase 2/genetics , Histone Deacetylase 2/metabolism , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , MAP Kinase Signaling System , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Kinase Inhibitors , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Sunitinib/pharmacology , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
13.
Front Immunol ; 13: 970885, 2022.
Article in English | MEDLINE | ID: mdl-36003383

ABSTRACT

Immune checkpoint blockade (ICB) has become a promising therapy for multiple cancers. However, only a small proportion of patients display a limited antitumor response. The present study aimed to classify distinct immune subtypes and investigate the tumor microenvironment (TME) of urothelial carcinoma, which may help to understand treatment failure and improve the immunotherapy response. RNA-seq data and clinical parameters were obtained from TCGA-BLCA, E-MTAB-4321, and IMVigor210 datasets. A consensus cluster method was used to distinguish different immune subtypes of patients. Infiltrating immune cells, TME signatures, immune checkpoints, and immunogenic cell death modulators were evaluated in distinct immune subtypes. Dimension reduction analysis was performed to visualize the immune status of urothelial carcinoma based on graph learning. Weighted gene co-expression network analysis (WGCNA) was performed to obtain hub genes to predict responses after immunotherapy. Patients with urothelial carcinoma were classified into four distinct immune subtypes (C1, C2, C3 and C4) with various types of molecular expression, immune cell infiltration, and clinical characteristics. Patients with the C3 immune subtype displayed abundant immune cell infiltrations in the tumor microenvironment and were typically identified as "hot" tumor phenotypes, whereas those with the C4 immune subtype with few immune cell infiltrations were identified as "cold" tumor phenotypes. The immune-related and metastasis-related signaling pathways were enriched in the C3 subtype compared to the C4 subtype. In addition, tumor mutation burden, inhibitory immune checkpoints, and immunogenic cell death modulators were highly expressed in the C3 subtype. Furthermore, patients with the C4 subtype had a better probability of overall survival than patients with the C3 subtype in TCGA-BLCA and E-MTAB-4321 cohorts. Patients with the C1 subtype had the best prognosis when undergoing anti-PD-L1 antibody treatment. Finally, the immune landscape of urothelial carcinoma showed the immune status in each patient, and TGFB3 was identified as a potential biomarker for the prediction of immunotherapy resistance after anti-PD-L1 monoclonal antibody treatment. The present study provided a bioinformatics basis for understanding the immune landscape of the tumor microenvironment of urothelial carcinoma.


Subject(s)
Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Transitional Cell/drug therapy , Humans , Immunotherapy/methods , Tumor Microenvironment/genetics , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/therapy
14.
Int J Biol Sci ; 18(4): 1401-1414, 2022.
Article in English | MEDLINE | ID: mdl-35280681

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and has the highest mortality rate. For metastatic RCC, systemic drug therapy is the most important method in addition to surgical tumor reduction. In recent years, tyrosine kinase inhibitors (TKIs) targeting the angiogenesis have been applied to treat ccRCC and achieved profound therapeutic effects. It has been reported that most patients receiving antiangiogenic therapy will develop resistance within 15 months. The mechanism of resistance to targeted therapy is extremely complex and has not been clarified. Ovarian tumor-associated protease domain-containing proteins (OTUDs) belonging to DUBs play a critical role in the tumorigenesis of solid tumors. However, the specific role of OTUDs in ccRCC is still elusive. Here, we investigated the clinicopathological role of OTUD family members in ccRCC. We demonstrated that OTUD1 was downregulated in renal cancer and involved in the poor prognosis of renal cancer. Then, we showed that OTUD1 inhibits cancer cell growth. Moreover, analysis of OTUD1 RNA-seq data indicated that OTUD1 inhibition triggers the AKT and NF-kappa B pathways in renal cancer cells. Furthermore, OTUD1 interacts with PTEN and regulates its stability. Subsequently, we revealed that downregulation of OTUD1 contributes to the sensitivity of renal cancer cells to TKIs, and this effect was blocked by TNF/NF-kappa B inhibitors and AKT inhibitors. Thus, we identified that the OTUD1-PTEN axis suppresses tumor growth and regulates the resistance of renal cancer to TKIs.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Female , Humans , Kidney Neoplasms/metabolism , Male , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
15.
Ann Surg Oncol ; 29(8): 5297-5306, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35316433

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE) is the second leading cause for death of radical prostatectomy. We aimed to establish new nomogram to predict the VTE risk after robot-assisted radical prostatectomy (RARP). METHODS: Patients receiving RARP in our center from November 2015 to June 2021, were enrolled in study. They were randomly divided into training and testing cohorts by 8:2. Univariate and multivariate logistic regression (model A) and stepwise logistic regression (model B) were used to fit two models. The net reclassification improvement (NRI), integrated discrimination improvement (IDI), and receiver operating characteristic (ROC) curve were used to compare predictive abilities of two new models with widely used Caprini risk assessment (CRA) model. Then, two nomograms were constructed and received internal validation. RESULTS: Totally, 351 patients were included. The area under ROC of model A and model B were 0.967 (95% confidence interval: 0.945-0.990) and 0.978 (95% confidence interval: 0.960-0.996), which also were assayed in the testing cohorts. Both the prediction and classification abilities of the two new models were superior to CRA model (NRI > 0, IDI > 0, p < 0.05). The C-index of Model A and Model B were 0.968 and 0.978, respectively. For clinical usefulness, the two new models offered a net benefit with threshold probability between 0.08 and 1 in decision curve analysis, suggesting the two new models predict VTE events more accurately. CONCLUSIONS: Both two new models have good prediction accuracy and are superior to CRA model. Model A has an advantage of less variable. This easy-to-use model enables rapid clinical decision-making and early intervention in high-risk groups, which ultimately benefit patients.


Subject(s)
Nomograms , Prostatectomy , Robotic Surgical Procedures , Venous Thromboembolism , Humans , Male , Prostate , Prostatectomy/adverse effects , Prostatectomy/methods , Random Allocation , Reproducibility of Results , Retrospective Studies , Risk Assessment , Robotic Surgical Procedures/adverse effects , Robotic Surgical Procedures/methods , Venous Thromboembolism/etiology
16.
Front Oncol ; 11: 684242, 2021.
Article in English | MEDLINE | ID: mdl-34408977

ABSTRACT

Long non-coding RNAs (lncRNAs) act as competing endogenous RNAs (ceRNAs) to regulate mRNA expression through sponging microRNA in tumorigenesis and progression. However, following the discovery of new RNA interaction, the differentially expressed RNAs and ceRNA regulatory network are required to update. Our study comprehensively analyzed the differentially expressed RNA and corresponding ceRNA network and thus constructed a potentially predictive tool for prognosis. "DESeq2" was used to perform differential expression analysis. Two hundred and six differentially expressed (DE) lncRNAs, 222 DE miRNAs, and 2,463 DE mRNAs were found in this study. The lncRNA-mRNA interactions in the miRcode database and the miRNA-mRNA interactions in the starBase, miRcode, and mirTarBase databases were searched, and a competing endogenous RNA (ceRNA) network with 186 nodes and 836 interactions was subsequently constructed. Aberrant expression patterns of lncRNA NR2F1-AS1 and lncRNA AC010168.2 were evaluated in two datasets (GSE89006, GSE31684), and real-time polymerase chain reaction was also performed to validate the expression pattern. Furthermore, we found that these two lncRNAs were independent prognostic biomarkers to generate a prognostic lncRNA signature by univariate and multivariate Cox analyses. According to the lncRNA signature, patients in the high-risk group were associated with a poor prognosis and validated by an external dataset. A novel genomic-clinicopathologic nomogram to improve prognosis prediction of bladder cancer was further plotted and calibrated. Our study deepens the understanding of the regulatory ceRNA network and provides an easy-to-do genomic-clinicopathological nomogram to predict the prognosis in patients with bladder cancer.

17.
Sci Immunol ; 6(61)2021 07 09.
Article in English | MEDLINE | ID: mdl-34244312

ABSTRACT

The B7 family ligand HERV-H LTR-associating protein 2 (HHLA2) is an attractive target for cancer immunotherapy because of its coinhibitory function, overexpression in human cancers, and association with poor prognoses. However, the knowledge of the HHLA2 pathway is incomplete. HHLA2 has an established positive receptor transmembrane and immunoglobulin (Ig) domain containing 2 (TMIGD2) but a poorly characterized negative receptor human killer cell Ig-like receptor, three Ig domains, and long cytoplasmic tail (KIR3DL3). Here, KIR3DL3 and TMIGD2 simultaneously bound to different sites of HHLA2. KIR3DL3 was mainly expressed on CD56dim NK and terminally differentiated effector memory CD8+ T (CD8+ TEMRA) cells. KIR3DL3+ CD8+ TEMRA acquired an NK-like phenotype and function. HHLA2 engagement recruited KIR3DL3 to the immunological synapse and coinhibited CD8+ T and NK cell function and killing, inducing immune-evasive HHLA2+ tumors. KIR3DL3 recruited SHP-1 and SHP-2 to attenuate Vav1, ERK1/2, AKT, and NF-κB signaling. HHLA2+ tumors from human kidney, lung, gallbladder, and stomach were infiltrated by KIR3DL3+ immune cells. KIR3DL3 blockade inhibited tumor growth in multiple humanized mouse models. Thus, our findings elucidated the molecular and cellular basis for the inhibitory function of KIR3DL3, demonstrating that the KIR3DL3-HHLA2 pathway is a potential immunotherapeutic target for cancer.


Subject(s)
Immunoglobulins/immunology , Neoplasms/immunology , Receptors, KIR/immunology , Animals , Antibodies, Monoclonal/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Survival , Cells, Cultured , Humans , Immune Tolerance , Immunoglobulins/genetics , Killer Cells, Natural/immunology , Mice, Inbred BALB C , Neoplasms/drug therapy , Receptors, KIR/antagonists & inhibitors
18.
Sci Rep ; 11(1): 10142, 2021 05 12.
Article in English | MEDLINE | ID: mdl-33980942

ABSTRACT

Comprehensive evaluation of photoselective vaporization of the prostate (PVP) versus plasmakinetic resection of the prostate (PKRP) in treating benign prostatic hyperplasia (BPH) is inadequate. This single-centre, retrospective observational study was designed to compare their efficacy, complications and sexual function. A total of 215 patients under PVP or PKRP were included in the study, propensity score matching (PSM) was performed to match the baseline characteristics of the two groups, and perioperative and three-year follow-up data were compared between them. Finally, 120 patients (60 for PVP and 60 for PKRP) were matched after PSM. Compared with the PKRP group, the intraoperative haemoglobin loss was lower (9.08 vs 13.75 g/L, P < 0.001) and the duration of catheterization and postoperative hospital stay were shorter (2.97 vs 4.10 day, P < 0.001; 3.95 vs 5.13 day, P < 0.001, respectively), but the operation time was longer (56.72 vs 49, 90 min, P < 0.001) in the PVP group. Urination measurements were improved for both groups after surgery, although no significant differences were found between them during follow-up. Sexual function after surgery was partly increased; however, frequent retrograde and discomfortable ejaculation occurred in both groups. In addition, dysuria incidence and retreatment were higher in the PVP group at 12 months. In conclusion, PVP is safe and effective in relieving BPH-related lower urinary tract symptoms with less perioperative blood loss and earlier recovery without inferior sexual function effects. However, the study is potentially affected by residual unmeasured confounding.


Subject(s)
Prostatectomy/methods , Prostatic Hyperplasia/surgery , Aged , Biomarkers , Follow-Up Studies , Humans , Male , Postoperative Complications , Prognosis , Propensity Score , Prostatectomy/adverse effects , Prostatic Hyperplasia/diagnosis , Treatment Outcome
19.
Sci Rep ; 11(1): 9164, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911146

ABSTRACT

Lymphocyte cytosolic protein 2 (LCP2) is one of the SLP-76 family of adapters, which are critical intermediates in signal cascades downstream of several receptors. LCP2 regulates immunoreceptor signaling (such as T-cell receptors) and is also required for integrin signaling in neutrophils and platelets. However, the role of LCP2 in the tumor microenvironment is still unknown. In this study, we found a significant increase of mRNA and protein expression of LCP2 in metastatic skin cutaneous melanoma compared to normal skin. The upregulation of LCP2 was associated with good overall survival of patients with metastatic skin cutaneous melanoma, who received pharmacotherapy and radiation. GSEA signaling pathways analysis showed that LCP2 was involved in multiple pathways of immune response and correlation analysis revealed LCP2 was positively correlated with molecules in TCR signaling and 11 immune checkpoints, while LCP2 negatively correlated with 2 immune checkpoints in the metastatic skin cutaneous melanoma. According to the different expressions of LCP2, high LCP2 expression was positively correlated with more tumor-infiltrating CD8+ T cells. Furthermore, Kaplan-Meier plot indicated that LCP2 acted as a prognostic biomarker for progression-free survival of patients with metastatic skin cutaneous melanoma receiving anti-PD1 immunotherapy. In conclusion, our results integrated both the expression and function of LCP2 in melanoma using multiple tools, shedding light on the potential role of LCP2 in melanoma, and suggesting LCP2 serves as a prognostic biomarker and therapeutic target in anti-tumor immunity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Biomarkers, Tumor/metabolism , CD8-Positive T-Lymphocytes/metabolism , Melanoma/pathology , Phosphoproteins/metabolism , Skin Neoplasms/pathology , Adaptor Proteins, Signal Transducing/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , CD28 Antigens/immunology , CD28 Antigens/metabolism , CD8-Positive T-Lymphocytes/pathology , Disease-Free Survival , Gene Expression Regulation, Neoplastic , Humans , Immune Checkpoint Inhibitors/therapeutic use , Kaplan-Meier Estimate , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/mortality , Phosphoproteins/genetics , Prognosis , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology , Skin Neoplasms/metabolism , Skin Neoplasms/mortality , Melanoma, Cutaneous Malignant
20.
Leuk Lymphoma ; 62(3): 606-613, 2021 03.
Article in English | MEDLINE | ID: mdl-33112183

ABSTRACT

LAG-3, through interaction with a variety of ligands, regulates T cell function via inhibition of T cell proliferation and activation. It has been demonstrated to be overexpressed on tumor infiltrating lymphocytes (TILs) of a variety of cancers with associated poor outcomes. The purpose of this study is to characterize the expression pattern and clinical significance of LAG-3 in pediatric Hodgkin lymphoma (HL). Patient tumor samples from Children's Oncology Group clinical trial AHOD0031 with matched patient outcome data were analyzed for the expression of LAG-3 and PD-L1 using immunohistochemistry. 73/115 patients (63%) demonstrated positive LAG-3 staining. No demographic or survival outcome data were significantly associated with LAG-3 expression. Interestingly, patients with the lowest density of expression were found to have the worst EFS, and those with highest density of expression demonstrated the best EFS. There was a positive statistically significant relationship between presence of LAG-3 and PD-L1 expression. This project is innovative in its characterization of LAG-3 as an immune checkpoint target in pediatric HL.


Subject(s)
Hodgkin Disease , Lymphoma , Antigens, CD , B7-H1 Antigen/genetics , Child , Humans , Immunohistochemistry , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor , Lymphocyte Activation Gene 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...