Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(30): 25561-25569, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30028583

ABSTRACT

This article reports for the time-resolved photophysical studies of spirally configured ( cis-stilbene) trimers and their spin-coated organic light-emitting diode (OLED) device performances. Transient absorption profiles of spirally configured, ter-( cis-stilbene) were studied by pulse radiolysis. The emission profiles after charge recombination of their incipient radical ions in benzene provides insights into the emission mechanism and efficiency in OLED devices. Blue-, sky blue-, and green-emitting OLED devices for a maximum external quantum efficiency are 4.32%, 4.70%, and 2.77%, respectively, by solution process.

2.
Materials (Basel) ; 8(8): 5265-5275, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-28793503

ABSTRACT

Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED), for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.

SELECTION OF CITATIONS
SEARCH DETAIL