Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1328834, 2024.
Article in English | MEDLINE | ID: mdl-38774220

ABSTRACT

Introduction: Unmanned aerial vehicles (UAVs) equipped with visible and multispectral cameras provide reliable and efficient methods for remote crop monitoring and above-ground biomass (AGB) estimation in rice fields. However, existing research predominantly focuses on AGB estimation based on canopy spectral features or by incorporating plant height (PH) as a parameter. Insufficient consideration has been given to the spatial structure and the phenological stages of rice in these studies. In this study, a novel method was introduced by fully considering the three-dimensional growth dynamics of rice, integrating both horizontal (canopy cover, CC) and vertical (PH) aspects of canopy development, and accounting for the growing days of rice. Methods: To investigate the synergistic effects of combining spectral, spatial and temporal parameters, both small-scale plot experiments and large-scale field testing were conducted in Jiangsu Province, China from 2021 to 2022. Twenty vegetation indices (VIs) were used as spectral features, PH and CC as spatial parameters, and days after transplanting (DAT) as a temporal parameter. AGB estimation models were built with five regression methods (MSR, ENet, PLSR, RF and SVR), using the derived data from six feature combinations (VIs, PH+CC, PH+CC+DAT, VIs+PH +CC, VIs+DAT, VIs+PH+CC+DAT). Results: The results showed a strong correlation between extracted and ground-measured PH (R2 = 0.89, RMSE=5.08 cm). Furthermore, VIs, PH and CC exhibit strong correlations with AGB during the mid-tillering to flowering stages. The optimal AGB estimation results during the mid-tillering to flowering stages on plot data were from the PLSR model with VIs and DAT as inputs (R 2 = 0.88, RMSE=1111kg/ha, NRMSE=9.76%), and with VIs, PH, CC, and DAT all as inputs (R 2 = 0.88, RMSE=1131 kg/ha, NRMSE=9.94%). For the field sampling data, the ENet model combined with different feature inputs had the best estimation results (%error=0.6%-13.5%), demonstrating excellent practical applicability. Discussion: Model evaluation and feature importance ranking demonstrated that augmenting VIs with temporal and spatial parameters significantly enhanced the AGB estimation accuracy. In summary, the fusion of spectral and spatio-temporal features enhanced the actual physical significance of the AGB estimation models and showed great potential for accurate rice AGB estimation during the main phenological stages.

2.
Int J Biol Macromol ; 254(Pt 1): 127667, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918608

ABSTRACT

Toll like receptors (TLRs) are important pattern recognition receptors participating in innate immune system. Up to now, no TLR has been identified in Jade perch (Scortum barcoo). In this study, we successfully identified 9 members of TLRs from the Jade perch. Amino acid sequence alignment analysis showed that the whole sequences of these TLRs were highly conserved among different fish species, especially in LRR, TM and TIR domains. Phylogenetic analysis revealed that each SbTLR was successfully grouped into corresponding gene family of teleosts. Expression analysis showed that most SbTLRs mainly expressed in liver, spleen, muscle and skin, while expressed less in brain and stomach. After Streptococcus agalactiae infection, expression of SbTLR2, SbTLR5S and SbTLR22 were significantly upregulated, while SbTLR3, SbTLR5M, SbTLR9, SbTLR13, and SbTLR14 were significantly downregulated. In all, this research first reported molecular characterization and expression profiles of 9 TLRs in Jade perch. These data will make a contribution for better understanding the antibacterial mechanism of TLRs in teleosts.


Subject(s)
Fish Diseases , Streptococcus agalactiae , Animals , Streptococcus agalactiae/genetics , Phylogeny , Immunity, Innate/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/chemistry , Fishes
3.
Plants (Basel) ; 12(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37765493

ABSTRACT

To investigate the impact of brackish water irrigation on the multidimensional root distribution and root-shoot characteristics of summer maize under different salt-tolerance-training modes, a micro-plot experiment was conducted from June to October in 2022 at the experimental station in Hohai University, China. Freshwater irrigation was used as the control (CK), and different concentrations of brackish water (S0: 0.08 g·L-1, S1: 2.0 g·L-1, S2: 4.0 g·L-1, S3: 6.0 g·L-1) were irrigated at six-leaf stage, ten-leaf stage, and tasseling stage, constituting different salt tolerance training modes, referred to as S0-2-3, S0-3-3, S1-2-3, S1-3-3, S2-2-3, and S2-3-3. The results showed that although their fine root length density (FRLD) increased, the S0-2-3 and S0-3-3 treatments reduced the limit of root extension in the horizontal direction, causing the roots to be mainly distributed near the plants. This resulted in decreased leaf area and biomass accumulation, ultimately leading to significant yield reduction. Additionally, the S2-2-3 and S2-3-3 treatments stimulated the adaptive mechanism of maize roots, resulting in boosted fine root growth to increase the FRLD and develop into deeper soil layers. However, due to the prolonged exposure to a high level of salinity, their roots below 30 cm depth senesced prematurely, leading to an inhibition in shoot growth and also resulting in yield reduction of 10.99% and 11.75%, compared to CK, respectively. Furthermore, the S1-2-3 and S1-3-3 treatments produced more reasonable distributions of FRLD, which did not boost fine root growth but established fewer weak areas (FLRD < 0.66 cm-3) in their root systems. Moreover, the S1-2-3 treatment contributed to increasing leaf development and biomass accumulation, compared to CK, whereas it allowed for minimizing yield reduction. Therefore, our study proposed the S1-2-3 treatment as the recommended training mode for summer maize while utilizing brackish water resources.

4.
Plants (Basel) ; 12(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36840139

ABSTRACT

Water deficiency, together with soil salinization, has been seriously restricting sustainable agriculture around the globe for a long time. Optimal soil moisture regulation contributes to the amelioration of soil water and salinity for crops, which is favorable for plant production. A field experiment with five soil water lower limit levels (T1: 85% FC, T2: 75% FC, T3: 65% FC, T4: 55% FC, and T5: 45% FC, where FC is the field capacity) was conducted in southern Xinjiang in 2018 to investigate the responses of soil water-salt dynamics and cotton performance to soil moisture regulation strategies. The results indicated that in the horizontal direction, the farther away the drip irrigation belt, the lower the soil moisture content and the greater the soil salinity. In the vertical direction, the soil moisture and soil salinity increased first and then decreased with an increase in soil depth after irrigation, and the distribution was similar to an ellipse. Moreover, the humid perimeter of soil water and the leaching range of soil salt increased with a decrease in the soil moisture lower limit. Though more soil salt was leached out for the T5 treatment at the flowering stage due to the higher single irrigation amount, soil salinity increased again at the boll setting stage owing to the long irrigation interval. After the cotton was harvested, soil salt accumulated in the 0-100 cm layer and the accumulation amount followed T3 > T5 > T1 > T2 > T4. Moreover, with a decline of soil moisture lower limit, both plant height and nitrogen uptake decreased significantly while the shoot-root ratio increased. Compared with the yield (7233.2 kg·hm-2) and water use efficiency (WUE, 1.27 kg·m-3) of the T1 treatment, the yield for the T2 treatment only decreased by 1.21%, while the WUE increased by 10.24%. Synthetically, considering the cotton yield, water-nitrogen use efficiency, and soil salt accumulation, the soil moisture lower limit of 75% FC is recommended for cotton cultivation in southern Xinjiang, China.

5.
Dev Comp Immunol ; 140: 104622, 2023 03.
Article in English | MEDLINE | ID: mdl-36543267

ABSTRACT

Interferon regulatory factors (IRFs) play an important role in innate and adaptive immune system. However, in teleosts, the data on IRFs is still scarce. Here, for the first time, we identified 11 members of IRFs from the zig-zag eel Mastacembelus armatus (MarIRF1-10). The deduced protein sequences are highly conserved among different fish species especially in DBD and IAD domain. Phylogenetic analysis indicated that MarIRFs preferentially grouped with fish species in Synbranchiformes or Perciformes. Expression analysis showed that MarIRFs were expressed in all nine tissues including spleen, gill, muscle and intestine. After infected by Aeromonas veronii, expression of MarIRF2, MaIRF4b and MaIRF5 were significantly upregulated in spleen, MarIRF1, MarIRF2 were significantly upregulated in kidney, but in liver, nearly all MarIRFs were downregulated. Taken together, this study first reported molecular characterization and expression patterns of 11 IRFs in the zig-zag eel. All these results will contribute a lot to better understanding the antibacterial mechanism of IRFs in teleosts.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Animals , Interferon Regulatory Factors/metabolism , Aeromonas veronii/physiology , Phylogeny , Fishes/genetics , Eels/genetics , Fish Proteins/metabolism , Interferon Regulatory Factor-1/metabolism
6.
Animals (Basel) ; 13(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36611773

ABSTRACT

Spinibarbus hollandi is an important commercial aquaculture species in southeastern China, but with long maturity period and low egg laying amount. However, there has been little study of its gonad development and reproductive regulation, which limits aquaculture production. Here, for the first time, gonadal transcriptomes of male and female S. hollandi were analyzed. A total of 167,152 unigenes were assembled, with only 48,275 annotated successfully. After comparison, a total of 21,903 differentially expressed genes were identified between male and female gonads, of which 16,395 were upregulated and 5508 were downregulated in the testis. In addition, a large number of differentially expressed genes participating in reproduction, gonad formation and differentiation, and gametogenesis were screened out and the differential expression profiles of partial genes were further validated using quantitative real-time PCR. These results will provide basic information for further research on gonad differentiation and development in S. hollandi.

SELECTION OF CITATIONS
SEARCH DETAIL
...