Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Neuron ; 112(8): 1342-1357.e6, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38359827

ABSTRACT

The basal forebrain (BF) is a complex structure that plays key roles in regulating various brain functions. However, it remains unclear how cholinergic and non-cholinergic BF neurons modulate large-scale functional networks and their relevance in intrinsic and extrinsic behaviors. With an optimized awake mouse optogenetic fMRI approach, we revealed that optogenetic stimulation of four BF neuron types evoked distinct cell-type-specific whole-brain BOLD activations, which could be attributed to BF-originated low-dimensional structural networks. Additionally, optogenetic activation of VGLUT2, ChAT, and PV neurons in the BF modulated the preference for locomotion, exploration, and grooming, respectively. Furthermore, we uncovered the functional network basis of the above BF-modulated behavioral preference through a decoding model linking the BF-modulated BOLD activation, low-dimensional structural networks, and behavioral preference. To summarize, we decoded the functional network basis of differential behavioral preferences with cell-type-specific optogenetic fMRI on the BF and provided an avenue for investigating mouse behaviors from a whole-brain view.


Subject(s)
Basal Forebrain , Animals , Mice , Basal Forebrain/physiology , Optogenetics , Magnetic Resonance Imaging , Neurons/physiology , Cholinergic Agents , Cholinergic Neurons/physiology
2.
Nat Neurosci ; 27(1): 116-128, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012399

ABSTRACT

Whole-brain genome editing to correct single-base mutations and reduce or reverse behavioral changes in animal models of autism spectrum disorder (ASD) has not yet been achieved. We developed an apolipoprotein B messenger RNA-editing enzyme, catalytic polypeptide-embedded cytosine base editor (AeCBE) system for converting C·G to T·A base pairs. We demonstrate its effectiveness by targeting AeCBE to an ASD-associated mutation of the MEF2C gene (c.104T>C, p.L35P) in vivo in mice. We first constructed Mef2cL35P heterozygous mice. Male heterozygous mice exhibited hyperactivity, repetitive behavior and social abnormalities. We then programmed AeCBE to edit the mutated C·G base pairs of Mef2c in the mouse brain through the intravenous injection of blood-brain barrier-crossing adeno-associated virus. This treatment successfully restored Mef2c protein levels in several brain regions and reversed the behavioral abnormalities in Mef2c-mutant mice. Our work presents an in vivo base-editing paradigm that could potentially correct single-base genetic mutations in the brain.


Subject(s)
Autism Spectrum Disorder , Gene Editing , Animals , Mice , Male , Autism Spectrum Disorder/genetics , Brain , Mutation/genetics , MEF2 Transcription Factors/genetics
3.
Science ; 382(6672): eabq8173, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37972184

ABSTRACT

Neuropeptides are key signaling molecules in the endocrine and nervous systems that regulate many critical physiological processes. Understanding the functions of neuropeptides in vivo requires the ability to monitor their dynamics with high specificity, sensitivity, and spatiotemporal resolution. However, this has been hindered by the lack of direct, sensitive, and noninvasive tools. We developed a series of GRAB (G protein-coupled receptor activation‒based) sensors for detecting somatostatin (SST), corticotropin-releasing factor (CRF), cholecystokinin (CCK), neuropeptide Y (NPY), neurotensin (NTS), and vasoactive intestinal peptide (VIP). These fluorescent sensors, which enable detection of specific neuropeptide binding at nanomolar concentrations, establish a robust tool kit for studying the release, function, and regulation of neuropeptides under both physiological and pathophysiological conditions.


Subject(s)
Biosensing Techniques , Islets of Langerhans , Neurons , Neuropeptides , Receptors, G-Protein-Coupled , Humans , Fluorescence , HEK293 Cells , Neuropeptides/analysis , Neuropeptides/metabolism , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Neurons/chemistry , Cerebral Cortex/chemistry , Animals , Rats , Islets of Langerhans/chemistry
4.
Proc Natl Acad Sci U S A ; 120(14): e2212387120, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36996110

ABSTRACT

The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.


Subject(s)
Adenosine , Neurons , Adenosine/pharmacology , Nucleoside Transport Proteins/genetics , Signal Transduction/physiology , Guanine Nucleotide Exchange Factors/metabolism
5.
Cell Discov ; 9(1): 16, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36746933

ABSTRACT

Astrocytes play a crucial role in regulating sleep-wake behavior, and adenosine signaling is generally thought to be involved. Here we show multiple lines of evidence supporting that modulation of the sleep-wake behavior by astrocyte Ca2+ activity could occur without adenosine signaling. In the basal forebrain and the brainstem, two brain regions that are known to be essential for sleep-wake regulation, chemogenetically-induced astrocyte Ca2+ elevation significantly modulated the sleep-wake cycle. Although astrocyte Ca2+ level positively correlated with the amount of extracellular adenosine, as revealed by a genetically encoded adenosine sensor, we found no detectable change in adenosine level after suppressing astrocyte Ca2+ elevation, and transgenic mice lacking one of the major extracellular ATP-adenosine conversion enzymes showed similar extracellular adenosine level and astrocyte Ca2+-induced sleep modulation. Furthermore, astrocyte Ca2+ is dependent primarily on local neuronal activity, causing brain region-specific regulation of the sleep-wake cycle. Thus, neural activity-dependent astrocyte activity could regulate the sleep-wake behavior independent of adenosine signaling.

6.
Nat Commun ; 13(1): 6896, 2022 11 12.
Article in English | MEDLINE | ID: mdl-36371399

ABSTRACT

The cerebral cortex is spontaneously active during sleep, yet it is unclear how this global cortical activity is spatiotemporally organized, and whether such activity not only reflects sleep states but also contributes to sleep state switching. Here we report that cortex-wide calcium imaging in mice revealed distinct sleep stage-dependent spatiotemporal patterns of global cortical activity, and modulation of such patterns could regulate sleep state switching. In particular, elevated activation in the occipital cortical regions (including the retrosplenial cortex and visual areas) became dominant during rapid-eye-movement (REM) sleep. Furthermore, such pontogeniculooccipital (PGO) wave-like activity was associated with transitions to REM sleep, and optogenetic inhibition of occipital activity strongly promoted deep sleep by suppressing the NREM-to-REM transition. Thus, whereas subcortical networks are critical for initiating and maintaining sleep and wakefulness states, distinct global cortical activity also plays an active role in controlling sleep states.


Subject(s)
Occipital Lobe , Sleep, REM , Mice , Animals , Sleep, REM/physiology , Occipital Lobe/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Wakefulness/physiology , Sleep/physiology , Electroencephalography
7.
Nat Commun ; 13(1): 5363, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36097007

ABSTRACT

cAMP is a key second messenger that regulates diverse cellular functions including neural plasticity. However, the spatiotemporal dynamics of intracellular cAMP in intact organisms are largely unknown due to low sensitivity and/or brightness of current genetically encoded fluorescent cAMP indicators. Here, we report the development of the new circularly permuted GFP (cpGFP)-based cAMP indicator G-Flamp1, which exhibits a large fluorescence increase (a maximum ΔF/F0 of 1100% in HEK293T cells), decent brightness, appropriate affinity (a Kd of 2.17 µM) and fast response kinetics (an association and dissociation half-time of 0.20 and 0.087 s, respectively). Furthermore, the crystal structure of the cAMP-bound G-Flamp1 reveals one linker connecting the cAMP-binding domain to cpGFP adopts a distorted ß-strand conformation that may serve as a fluorescence modulation switch. We demonstrate that G-Flamp1 enables sensitive monitoring of endogenous cAMP signals in brain regions that are implicated in learning and motor control in living organisms such as fruit flies and mice.


Subject(s)
Diagnostic Imaging , Second Messenger Systems , Animals , Coloring Agents , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Mice
8.
Gene ; 842: 146777, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35952843

ABSTRACT

The uniquely human CHRFAM7A gene is evolved from the fusion of two partially duplicated genes, ULK4 and CHRNA7. Transcription of CHRFAM7A gene produces a 1256-bp open reading frame (ORF) that encodes duplicate α7-nAChR (dup-α7-nAChR), in which a 27-aminoacid peptide derived from ULK4 gene replaces the 146-aminoacid N-terminal extracellular domain of α7-nAChR, and the rest protein domains are exactly the same as those of α7-nAChR. In vitro, dup-α7-nAChR has been shown to form hetero-pentamer with α7-nAChR and dominant-negatively inhibits the channel functions of the latter. α7-nAChR has been shown to participate in many pathophysiological processes such as cognition, memory, neuronal degenerative disease, psychological disease, and inflammatory diseases, among others, and thus has been extensively exploited as potential therapeutic targets for many diseases. Unfortunately, many lead compounds that showed potent therapeutic effect in preclinical animal models failed clinical trials, suggesting the possibility that the contribution of the uniquely human CHRFAM7A gene may not be accounted for in the preclinical research. Here, we review the emergence of CHRFAM7A gene and its transcriptional regulation, the regulatory roles of CHRFAM7A gene in α7-nAChR-mediated cholinergic anti-inflammatory pathway, and the potential implications of CHRFAM7A gene in translational research and drug discovery.


Subject(s)
Receptors, Nicotinic , alpha7 Nicotinic Acetylcholine Receptor , Animals , Gene Expression Regulation , Genes, Duplicate , Humans , Inflammation/genetics , Inflammation/metabolism , Neurons/metabolism , Receptors, Nicotinic/genetics , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
9.
Org Biomol Chem ; 20(31): 6193-6195, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35467680

ABSTRACT

Described is a total synthesis of racemic mersicarpine from diethyl 4-oxopimelate. The synthetic route takes advantage of a 2-indolyl radical cyclization to construct the pyrido[1,2-a]indole scaffold bearing the all-carbon quaternary stereocenter.


Subject(s)
Indole Alkaloids , Cyclization , Molecular Structure , Stereoisomerism
10.
Cardiovasc Toxicol ; 22(5): 404-418, 2022 05.
Article in English | MEDLINE | ID: mdl-35129819

ABSTRACT

Esophageal Cancer-Related Gene 4 (Ecrg4) expressed in cardiomyocytes and the cardiac conduction system is downregulated during cardiac ischemia and atrial fibrillation. To explore whether Ecrg4 plays any role in doxorubicin (DOX)-induced cardiotoxicity. Rats and neonatal rat cardiomyocytes (NRCMs) were employed to study the effect of DOX on Ecrg4 transcription. Bioinformatics combined with promoter analysis were used to map the rat Ecrg4 promoter. ChIP assay was used to evaluate the binding of Sp1 to the Ecrg4 promoter. Transient transfection was used to study the effect of Sp1 on the expression of endogenous Ecrg4. DOX decreased endogenous Ecrg4 gene expression in the heart and cultured NRCMs. In silico analysis showed that the 5'UTR immediately upstream of the start codon ATG, harbors a putative promoter that is GC-rich, and contains CpG islands, multiple overlapping Sp1sites. Transcription is initiated mainly on the 'C' at - 15. Serial 5'-deletion combined with dual-luciferase assays showed that the rat Ecrg4 core promoter resides at - 1/- 800. Sp1 transactivated Ecrg4 gene, which was almost abolished by DOX. Furthermore, ChIP assay showed that Sp1 specifically bound to the Ecrg4 promoter was interrupted by DOX. Finally, DOX suppressed Sp1 protein expression, and restoration of Sp1 increased Ecrg4 expression that was resistant to DOX-induced Ecrg4 downregulation. Importantly, cardiomyocyte-specific loss of Ecrg4 significantly enriched the differentially expressed proteins in the signaling pathways commonly involved in DOX-induced cardiotoxicity. Our results indicate that Sp1 mediates DOX-induced suppression of Ecrg4, which may contribute indirectly to its cardiotoxicity.


Subject(s)
Antibiotics, Antineoplastic , Cardiotoxicity , Esophageal Neoplasms , Myocytes, Cardiac , Animals , Antibiotics, Antineoplastic/adverse effects , Apoptosis , Cardiotoxicity/genetics , Cardiotoxicity/metabolism , Doxorubicin/adverse effects , Esophageal Neoplasms/metabolism , Myocytes, Cardiac/drug effects , Rats
11.
Int J Stem Cells ; 15(3): 247-257, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35220280

ABSTRACT

Background and Objectives: Although human-induced pluripotent stem cells (hiPSC) can be efficiently differentiated into cardiomyocytes (CMs), the heterogeneity of the hiPSC-CMs hampers their applications in research and regenerative medicine. Retinoic acid (RA)-mediated signaling pathway has been proved indispensable in cardiac development and differentiation of hiPSC toward atrial CMs. This study was aimed to test whether RA signaling pathway can be manipulated to direct the differentiation into sinoatrial node (SAN) CMs. Methods and Results: Using the well-characterized GiWi protocol that cardiomyocytes are generated from hiPSC via temporal modulation of Wnt signaling pathway by small molecules, RA signaling pathway was manipulated during the differentiation of hiPSC-CMs on day 5 post-differentiation, a crucial time point equivalent to the transition from cardiac mesoderm to cardiac progenitor cells in cardiac development. The resultant CMs were characterized at mRNA, protein and electrophysiology levels by a combination of qPCR, immunofluorescence, flow cytometry, and whole-cell patch clamp. The results showed that activation of the RA signaling pathway biased the differentiation of atrial CMs, whereas inhibition of the signaling pathway biased the differentiation of sinoatrial node-like cells (SANLCs). Conclusions: Our study not only provides a novel and simple strategy to enrich SANLCs but also improves our understanding of the importance of RA signaling in the differentiation of hiPSC-CMs.

12.
Int J Stem Cells ; 14(4): 410-422, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34158418

ABSTRACT

BACKGROUND AND OBJECTIVES: Manipulating different signaling pathways via small molecules could efficiently induce cardiomyocytes from human induced pluripotent stem cells (hiPSC). However, the effect of transcription factors on the hiPSC-directed cardiomyocytes differentiation remains unclear. Transcription factor, p53 has been demonstrated indispensable for the early embryonic development and mesendodermal differentiation of embryonic stem cells (ESC). We tested the hypothesis that p53 promotes cardiomyocytes differentiation from human hiPSC. METHODS AND RESULTS: Using the well-characterized GiWi protocol that cardiomyocytes are generated from hiPSC via temporal modulation of Wnt signaling pathway by small molecules, we demonstrated that forced expression of p53 in hiPSC remarkably improved the differentiation efficiency of cardiomyocytes from hiPSC, whereas knockdown endogenous p53 decreased the yield of cardiomyocytes. This p53-mediated increased cardiomyocyte differentiation was mediated through WNT3, as evidenced by that overexpression of p53 upregulated the expression of WNT3, and knockdown of p53 decreased the WNT3 expression. Mechanistic analysis showed that the increased cardiomyocyte differentiation partially depended on the amplified mesendodermal specification resulted from p53-mediated activation of WNT3-mediated Wnt signaling. Consistently, endogenous WNT3 knockdown significantly ameliorated mesendodermal specification and subsequent cardiomyocyte differentiation. CONCLUSIONS: These results provide a novel insight into the potential effect of p53 on the development and differentiation of cardiomyocyte during embryogenesis.

13.
J Drug Target ; 29(10): 1128-1138, 2021 12.
Article in English | MEDLINE | ID: mdl-34182845

ABSTRACT

Exosome is a promising next generation nano-based drug delivery vehicle. However, the unknown molecular mechanisms underlying its natural tissue tropism and the relatively low quantity of naturally enriched molecules of therapeutic value hamper exosome's clinical application. The aim of the research was to create a targeted and highly efficacious exosome formulation for the treatment of Alzheimer's disease (AD). Genetic engineering techniques combined with co-transfection of parental cells were employed to create an exosome formulation that displays RVG peptide on its surface targeting α7-nAChR and simultaneously enriches a neprilysin variant with increased specificity and efficacy in degrading ß amyloid peptide (Aß). The exosome formulation was preferentially internalised into cell lines in an α7-nAChR expression level-dependent manner. When incubated with Aß-producing N2a cells, it significantly decreased intracellular and secreted Aß40 levels, a potency that is superior to exosomes derived from adipose-derived stem cell. When systemically administered into mice, the exosome formulation was preferentially targeted to the hippocampus region of the brain and significantly decreased the expression of proinflammatory genes, IL1α, TNFα and NF-κB, and simultaneously increased the expression of anti-inflammatory gene, IL10. Our exosome formulation may be explored as an over-the-counter treatment for AD.


Subject(s)
Alzheimer Disease/drug therapy , Exosomes/metabolism , Glycoproteins/administration & dosage , Neprilysin/administration & dosage , Peptide Fragments/administration & dosage , Viral Proteins/administration & dosage , Amyloid beta-Peptides/metabolism , Animals , Cell Line , Cell Line, Tumor , Drug Delivery Systems , Female , Genetic Engineering/methods , Glycoproteins/pharmacology , Hippocampus/metabolism , Humans , Mice , Mice, Inbred BALB C , Neprilysin/pharmacology , Peptide Fragments/pharmacology , Viral Proteins/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism
14.
Sci Adv ; 7(20)2021 05.
Article in English | MEDLINE | ID: mdl-33990327

ABSTRACT

Sensory processing is subjected to modulation by behavioral contexts that are often mediated by long-range inputs to cortical interneurons, but their selectivity to different types of interneurons remains largely unknown. Using rabies-virus tracing and optogenetics-assisted recording, we analyzed the long-range connections to various brain regions along the hierarchy of visual processing, including primary visual cortex, medial association cortices, and frontal cortices. We found that hierarchical corticocortical and thalamocortical connectivity is reflected by the relative weights of inputs to parvalbumin-positive (PV+) and vasoactive intestinal peptide-positive (VIP+) neurons within the conserved local circuit motif, with bottom-up and top-down inputs preferring PV+ and VIP+ neurons, respectively. Our algorithms based on innervation weights for these two types of local interneurons generated testable predictions of the hierarchical position of many brain areas. These results support the notion that preferential long-range inputs to specific local interneurons are essential for the hierarchical information flow in the brain.


Subject(s)
Interneurons , Parvalbumins , Interneurons/physiology , Neurons/physiology , Vasoactive Intestinal Peptide , Visual Perception
15.
Nat Neurosci ; 24(5): 746-752, 2021 05.
Article in English | MEDLINE | ID: mdl-33821000

ABSTRACT

Serotonin (5-HT) is a phylogenetically conserved monoamine neurotransmitter modulating important processes in the brain. To directly visualize the release of 5-HT, we developed a genetically encoded G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensor with high sensitivity, high selectivity, subsecond kinetics and subcellular resolution. GRAB5-HT detects 5-HT release in multiple physiological and pathological conditions in both flies and mice and provides new insights into the dynamics and mechanisms of 5-HT signaling.


Subject(s)
Neurons/metabolism , Receptors, G-Protein-Coupled/metabolism , Serotonergic Neurons/metabolism , Serotonin/metabolism , Animals , Female , HEK293 Cells , Humans , Male , Mice , Rats , Signal Transduction/physiology
16.
Science ; 369(6508)2020 09 04.
Article in English | MEDLINE | ID: mdl-32883833

ABSTRACT

Sleep and wakefulness are homeostatically regulated by a variety of factors, including adenosine. However, how neural activity underlying the sleep-wake cycle controls adenosine release in the brain remains unclear. Using a newly developed genetically encoded adenosine sensor, we found an activity-dependent rapid increase in the concentration of extracellular adenosine in mouse basal forebrain (BF), a critical region controlling sleep and wakefulness. Although the activity of both BF cholinergic and glutamatergic neurons correlated with changes in the concentration of adenosine, optogenetic activation of these neurons at physiological firing frequencies showed that glutamatergic neurons contributed much more to the adenosine increase. Mice with selective ablation of BF glutamatergic neurons exhibited a reduced adenosine increase and impaired sleep homeostasis regulation. Thus, cell type-specific neural activity in the BF dynamically controls sleep homeostasis.


Subject(s)
Adenosine/metabolism , Basal Forebrain/physiology , Glutamic Acid/physiology , Homeostasis , Neurons/physiology , Sleep/physiology , Animals , Basal Forebrain/cytology , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Transgenic , Rats , Receptor, Adenosine A2A/genetics , Receptors, G-Protein-Coupled/genetics , Wakefulness
17.
Nat Methods ; 17(11): 1139-1146, 2020 11.
Article in English | MEDLINE | ID: mdl-32989318

ABSTRACT

The ability to directly measure acetylcholine (ACh) release is an essential step toward understanding its physiological function. Here we optimized the GRABACh (GPCR-activation-based ACh) sensor to achieve substantially improved sensitivity in ACh detection, as well as reduced downstream coupling to intracellular pathways. The improved version of the ACh sensor retains the subsecond response kinetics, physiologically relevant affinity and precise molecular specificity for ACh of its predecessor. Using this sensor, we revealed compartmental ACh signals in the olfactory center of transgenic flies in response to external stimuli including odor and body shock. Using fiber photometry recording and two-photon imaging, our ACh sensor also enabled sensitive detection of single-trial ACh dynamics in multiple brain regions in mice performing a variety of behaviors.


Subject(s)
Acetylcholine/metabolism , Biosensing Techniques/methods , Brain/metabolism , Animals , Animals, Genetically Modified , Behavior, Animal/physiology , Cholinergic Agents/pharmacology , Drosophila/genetics , Drosophila/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Mice , Mushroom Bodies/metabolism , Neurons/metabolism , Olfactory Cortex/metabolism , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/metabolism , Somatosensory Cortex/metabolism
18.
Chem Commun (Camb) ; 56(34): 4660-4663, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32211656

ABSTRACT

A method for the catalytic α-arylation of indolin-3-ones was developed. The catalytic system comprising Pd(dba)2 and PAd3 was found to be optimal for the transformation. The protocol features broad functional group compatibility in that a range of arylated indoxyl derivatives bearing a fully substituted carbon center was synthesized with high efficiency. A preliminary bioassay study revealed that the selected indole-substituted indolin-3-ones exhibit favorable cytotoxic activities against HCT-116 cancer cell line.

19.
Cell ; 174(2): 481-496.e19, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007419

ABSTRACT

Dopamine (DA) is a central monoamine neurotransmitter involved in many physiological and pathological processes. A longstanding yet largely unmet goal is to measure DA changes reliably and specifically with high spatiotemporal precision, particularly in animals executing complex behaviors. Here, we report the development of genetically encoded GPCR-activation-based-DA (GRABDA) sensors that enable these measurements. In response to extracellular DA, GRABDA sensors exhibit large fluorescence increases (ΔF/F0 ∼90%) with subcellular resolution, subsecond kinetics, nanomolar to submicromolar affinities, and excellent molecular specificity. GRABDA sensors can resolve a single-electrical-stimulus-evoked DA release in mouse brain slices and detect endogenous DA release in living flies, fish, and mice. In freely behaving mice, GRABDA sensors readily report optogenetically elicited nigrostriatal DA release and depict dynamic mesoaccumbens DA signaling during Pavlovian conditioning or during sexual behaviors. Thus, GRABDA sensors enable spatiotemporally precise measurements of DA dynamics in a variety of model organisms while exhibiting complex behaviors.


Subject(s)
Dopamine/analysis , Drosophila/metabolism , Zebrafish/metabolism , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Behavior, Animal , Dopamine/metabolism , Female , Green Fluorescent Proteins/genetics , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Neurons/cytology , Neurons/metabolism , Optogenetics/methods , Receptors, G-Protein-Coupled/genetics , TRPV Cation Channels/genetics , Zebrafish Proteins/genetics
20.
J Org Chem ; 82(20): 10855-10865, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28931283

ABSTRACT

An efficient strategy for synthesizing 3-(2-olefinbenzyl)-4H-chromen-4-one in two steps was developed. The first step is a cyclobenzylation reaction between (E)-3-(dimethylamino)-1-(2-hydroxyphenyl)prop-2-en-1-one and benzyl bromide to produce homoisoflavonoid. The second step involves intermolecular Pd-catalyzed π-chelating-assisted C-H bond olefination. Using the C-2/C-3 double bond of chromone, palladium-catalyzed aryl C-H bond activation can be functionalized to generate ortho-olefination derivatives in moderate to high yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...