Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 264(Pt 1): 129907, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38325691

ABSTRACT

Obesity is a chronic metabolic disease. Our previous research found flaxseed polysaccharide (FP) has an anti-obesity effect, and its anti-obesity effect possibly depends on Clostridium leptum (C. leptum). However, whether the strain takes the role and how it works is still being determined. Here, FP was fermented in vitro by C. leptum and its metabolites were analyzed. Subsequently, the FP fermentation broth of C. leptum (FPF) was given to the obese pseudo sterile rats. The results showed FPF was rich in various metabolites, among which the top ten in relative expression abundance were 3 beta-hydroxy-5-cholestenoate, 7,8-dihydro-3b,6a-dihydroxy-alpha-ionol 9-glucoside, Valyl-Serine, 2-amino-4-[(2-hydroxy-1-oxopropyl)amino]butanoic acid, Agavoside B, glycylproline, lycopersiconolide, armillaritin, Isoleucyl-Hydroxyproline and norethindrone acetate. After intervention with FPF, the weight, abdominal fat ratio, and total fat ratio of rats were significantly reduced and the lipid metabolism of them has been improved. This effect may be achieved by up regulating glucagon-like peptide-1 and adiponectin and further activating the AMP-activated protein kinase signaling pathway. This is the first experimental proof that FP exerts its anti-obesity effects through metabolites from C. leptum fermenting FP, not FP itself and the bacterial cells (debris) of C. leptum. It is also the first demonstration that FPF has a significant anti-obesity effect.


Subject(s)
Flax , Lactobacillales , Rats , Animals , Obesity/metabolism , Clostridium , Polysaccharides/pharmacology , Diet, High-Fat
2.
J Sci Food Agric ; 104(2): 1116-1131, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37740718

ABSTRACT

BACKGROUND: ß-Glucans are widely sourced and have various physiological effects, including anti-inflammatory effects. However, the strength of the anti-inflammatory activity of ß-glucans from different sources remains unknown due to the lack of rapid and effective biomarkers. This study therefore aimed to screen out the ß-glucans with strong anti-inflammatory activity from five different sources and to further screen out possible biomarkers in metabolites after fermenting the ß-glucans with gut microorganisms. RESULTS: The results showed that all five ß-glucans inhibited the production of lipopolysaccharide (LPS)-induced pro-inflammatory mediators and suppressed the mRNA expression level of TLR4/MyD88. Their anti-inflammatory mechanisms involved the inhibition of intracellular reactive oxygen species (ROS) production and suppression of mRNA expression of the NF-κB pathway and JNK pathway. Among them, barley ß-glucan exhibited the strongest anti-inflammatory effect, followed by Ganoderma lucidum ß-glucan. Enhanced anti-inflammatory activity of ß-glucan was found after fermentation and may be related to the increased abundance of metabolites such as vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid. They were strongly positively correlated to the abundance of beneficial bacteria such as Blautia, suggesting that the production of those metabolites may be responsible for the flourishing of the beneficial bacteria. CONCLUSION: In conclusion, barley was a preferred raw material for the preparation of ß-glucans with strong anti-inflammatory activity. Vanillin, dihydroxyphenylacetic acid, caffeic acid, acetic acid, butyric acid, and lactic acid were the possible biomarkers that could be utilized to evaluate the anti-inflammatory effect of ß-glucans. © 2023 Society of Chemical Industry.


Subject(s)
beta-Glucans , beta-Glucans/metabolism , Fermentation , Butyric Acid , Anti-Inflammatory Agents/pharmacology , Bacteria/genetics , Bacteria/metabolism , Biomarkers/metabolism , Lactic Acid , RNA, Messenger/metabolism
3.
Foods ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36673366

ABSTRACT

Lactobacillus acidophilus (LA) and Astragalus polysaccharides (APS) have each been shown to have anti-osteoporotic activity, and the aim of this study was to further investigate whether the LA fermenting APS was more effective in improving calcium absorption and osteoporosis than the unfermented mixed solution (MS). We found that the fermentation solution (FS) intervention improved the calcium absorption, BMD, and bone microarchitecture in osteoporotic rats and resulted in better inhibition of osteoclast differentiation markers ACP-5 and pro-inflammatory cytokines TNF-α and IL-6 and promotion of osteoblast differentiation marker OCN. This better performance may be due to the improved restoration of the relative abundance of specific bacteria associated with improved calcium absorption and osteoporosis such as Lactobacillus, Allobaculum, and UCG-005. Several key metabolites, including indicaxanthin, chlorogenic acid, and 3-hydroxymelatonin, may also be the key to the better improvement. In conclusion, the LA fermenting APS can better improve calcium absorption and osteoporosis by increasing active metabolites and altering gut microbiota. This finding should become a solid foundation for the development of LA fermenting APS in functional foods.

4.
Int J Biol Macromol ; 226: 1455-1467, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36442555

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease affected patients' quality of life severely. Our previous study found Lycium barbarum polysaccharide (LBP) alleviated RA, but it remains unknown whether gut microbiota is necessary for the alleviation. Here, RA models were established in rats with microbiota and rats treated by antibiotic cocktail, and LBP was applied for the intervention on rats. The biochemical test, 16S rDNA sequencing and metabolome analysis were applied to analyze the effects of LBP on gut microbiota, their metabolites and hosts. Results showed the LBP intervention improved RA by inhibiting pro-inflammatory cytokines IL-1α, IL-1ß, TNF-α and IL-6 only in rats with microbiota, but not in pseudo-germ-free rats. The abundance of specific bacteria, including Romboutsia, Lactobacillus, Turicibacter, Clostridium_sensu_stricto_1, Faecalibacterium and Adlercreutzia, and several metabolites, including O-desmethylangolensin, 3-hydroxydodecanedioic acid, N-formyl-L-methionine, suberic acid, (S)-oleuropeic acid, prolyl-histidine, 13,14-dihydro PGF-1a, (R)-pelletierine and short-chain fatty acids increased only in RA rats with microbiota after the intervention. Our results suggest that intestinal bacteria are necessary for LBP alleviating RA alleviation. The fermentation metabolite acts on the host instead of LBP itself, which may be the reason for the improvement of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Drugs, Chinese Herbal , Lycium , Rats , Animals , Quality of Life , Drugs, Chinese Herbal/pharmacology , Bacteria
5.
J Agric Food Chem ; 71(1): 320-330, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36530149

ABSTRACT

The metabolic disease hyperuricemia (HUA) is characterized by a disturbance in purine metabolism. Peptides, such as marine fish-derived peptides, have previously been shown to be effective in alleviating HUA. In this study, HUA rats were induced by potassium oxonate with 100 mg/kg (L), 200 mg/kg (M), and 400 mg/kg (H) of marine fish protein peptide (MFPP). The results showed that MFPP could effectively reduce the serum uric acid (SUA) levels compared with the model group rats; kidney histopathology and the levels of inflammatory factors (TNF-α, IL-6, and IL-10) indicated that MFPP attenuated HUA-induced kidney inflammation. Meanwhile, MFPP restored the abundance of beneficial bacteria, including Lactobacillus, Blautia, Colidextribacter, and Intestinimonas. MFPP further repaired the intestinal barrier by recovering the expression of gene Ildr2 encoding the tricellular tight junction protein ILDR2 and the immune-related genes Ccr7 and Nr4a3 and also regulated the expression of Entpd8 and Cyp27b1 to restore kidney function and uric acid metabolism. MFPP was proved to have potential as a therapeutic strategy to be included in dietary intervention to relieve HUA.


Subject(s)
Hyperuricemia , Intestinal Diseases , Rats , Animals , Hyperuricemia/chemically induced , Hyperuricemia/drug therapy , Hyperuricemia/genetics , Uric Acid/metabolism , Fish Proteins/metabolism , Kidney/metabolism , Intestinal Diseases/metabolism , Carrier Proteins/metabolism , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Peptides/metabolism
6.
Foods ; 13(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201125

ABSTRACT

Edible fungi polysaccharides are widely sourced and have various physiological activities, including hypoglycemic. Current studies mainly focus on the hypoglycemic activity of polysaccharides themselves, while the strength of the hypoglycemic activity of edible fungi polysaccharides from different sources remained elusive. This study compared the hypoglycemic activity of different edible fungi polysaccharides after in vitro fermentation by fecal bacteria, combined with non-targeted metabolomics and 16S rDNA analysis, to screen out potential key metabolites related to the hypoglycemic activity. The results show that the fermentation supernatants of all four edible fungi polysaccharides significantly increased the glucose consumption and glycogen synthesis of IR-HepG2, also up-regulated the level of hexokinase and down-regulated the level of phosphoenolpyruvate carboxylase. All fermentation supernatants could alleviate the insulin resistance of IR-HepG2 cells by regulating the expression levels of genes related to the IRS-1/PI3K/Akt signaling pathway. Gingerglycolipid A, sphinganine 1-phosphate, matricin, tricarballylic acid, N-carbamoylputrescine, nomega-acetylhistamine, tyramine, and benzamide could be considered as potential key metabolites to evaluate the hypoglycemic effects. Their levels were strongly positively correlated with the abundance of Candidatus_Stoquefichu, Faecalibacterium, Coprococcus, Bacteroides, Eubacterium_ventriosum_group, Anaerostipes, Parabacteroides, and Agathobacter. These metabolites and microorganisms are closely related to the hypoglycemic activity of edible fungi polysaccharides.

7.
Food Funct ; 13(22): 11592-11603, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36268605

ABSTRACT

Aging is a natural process in which the structural integrity of an organism declines over time. The in vivo anti-aging activities in Caenorhabditis elegans (C. elegans) of 5 different in vitro edible fungal polysaccharides (EFPs) fermented by human feces were compared. The metabolites and microbial structure within the selected fermented polysaccharide solution were further analyzed using 16S rDNA sequencing and non-targeted metabolomics. The results showed that the fermented EFPs exhibited different anti-aging activities, and fermented Lanmaoa asiatica polysaccharides (FLAP) and Hohenbuehelia serotina polysaccharides (FHSP) were the best two. Beneficial bacteria (Romboutsia and Weissella) and metabolites with antioxidant, anti-inflammatory and immune-protective effects (ergothioneine, oleic acid and notoginsenoside R10) were positively correlated and enriched in FLAP and FHSP. These metabolites might have been generated by those bacteria and could be responsible for a significant anti-aging effect. Therefore, the anti-aging potency of the fermented EFPs correlates with metabolites during fermentation using human fecal intestinal microflora.


Subject(s)
Fungal Polysaccharides , Gastrointestinal Microbiome , Humans , Animals , Fermentation , Caenorhabditis elegans/metabolism , Feces/microbiology , Polysaccharides/chemistry , Bacteria/genetics , Bacteria/metabolism , Aging
8.
NPJ Sci Food ; 6(1): 34, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35864275

ABSTRACT

Rheumatoid arthritis (RA) seriously impairs the quality of life of sufferers. It has been shown that Lycium barbarum polysaccharide (LBP), a natural active indigestible ingredient with medicinal and edible functions, can effectively relieve RA, however, whether this effect is related to gut microbiota is not known. This study aimed to explore the RA alleviating mechanism of LBP mediated by gut microbiota using a collagen-induced arthritis rat model. The results showed that LBP significantly changed the gut microflora structure accompanied with the RA alleviation. Specifically, a LBP intervention reduced the relative abundance of Lachnospiraceae_NK4A136_group and uncultured_bacterium_f_Ruminococcaceae and significantly increased the abundance of Romboutsia, Lactobacillus, Dubosiella and Faecalibaculum. The mRNA contents of several colonic epithelial genes including Dpep3, Gstm6, Slc27a2, Col11a2, Sycp2, SNORA22, Tnni1, Gpnmb, Mypn and Acsl6, which are potentially associated to RA, were down-regulated due to the DNA hypermethylation, possibly caused by the elevating content of a bacterial metabolite S-adenosyl methionine (SAM). In conclusion, our current study suggests that LBP alleviated RA by reshaping the composition of intestinal microflora which may generate SAM, inducing DNA hypermethylation of RA-related genes in the host intestinal epithelium and subsequently reducing their expression.

9.
Foods ; 11(13)2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35804806

ABSTRACT

Obesity is one of the most serious public health challenges. Recently, we found that flaxseed polysaccharides (FPs) had an anti-obesity effect through promoting lipid metabolism, but the obesity-inhibiting pathway of FP is still unclear. In this study, after FP intervention in an obese rat model, a transcriptome study was performed to further investigate how FP intervention alters the gene expression of colonic epithelial tissues (CETs). The results showed that there were 3785 genes differentially expressed due to the FP intervention, namely 374 downregulated and 3411 upregulated genes. After analyzing all the differentially expressed genes, two classical KEGG pathways were found to be related to obesity, namely the PPAR-signaling pathway and energy metabolism, involving genes Fabp1-5, Lpl, Gyk, Qqp7, Pparg, Rxrg, Acsl1, Acsl4, Acsl6, Cpt1c, Car1-4, Ca5b, Car8, Car12-14, Cps1, Ndufa4l2, Cox6b2, Atp6v1g2, Ndufa4l2 and Cox4i2. QRT-PCR results showed a consistent expression trend. Our results indicate that FP promotes lipid metabolism by changing the expression of some key genes of CETs, thus inhibiting obesity.

10.
J Sci Food Agric ; 102(14): 6432-6442, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35567370

ABSTRACT

BACKGROUND: Aging causes decreased antioxidant capacity and chronic inflammation and may even elevate cancer risks. Previous studies reported that flaxseed oil (FO) can alleviate age-related diseases, including improving alcoholic liver disease, atherosclerosis and diabetes. However, whether the intestinal microbiota accountable for this alleviation is still unknown. This study aims to study the antioxidant effects of FO in an aging rat model and the underlying mechanism between the intestinal microbiota and aging. RESULTS: Our results presented that serum and liver antioxidant capacities in FO group were up-regulated, and liver inflammation in FO group was reduced. The 16S rDNA sequencing showed that FO regulated the microbial community, including up-regulation of four families of Lactobacillus and six families of Clostridium. In addition, FO had also adjusted the relative abundance of several genera such as Ruminococcaceae_UCG-005 and Prevotella_9, which may be the key bacteria associated with the aging process. Colonic transcriptome analysis showed that there were 1679 differentially expressed genes (DEGs) in the Model group and the FO group (134 up-regulated and 1545 down-regulated). Gene set enrichment analysis (GSEA) revealed FO down-regulates the expression of the upstream genes Ptprc, Lck, Zap70, Lat and Lcp2 in the T cell receptor signaling pathway. CONCLUSION: In conclusion, FO improved antioxidant capacity and reduced intestinal microbial disturbances caused by aging damage, indicating that dietary FO has the potential to fight aging damage. This study provides a more comprehensive view of dietary intervention to improve aging. © 2022 Society of Chemical Industry.


Subject(s)
Gastrointestinal Microbiome , Linseed Oil , Aging , Animals , Antioxidants/pharmacology , DNA, Ribosomal/pharmacology , Galactose/adverse effects , Inflammation , Oxidative Stress , Rats , Receptors, Antigen, T-Cell
11.
Int J Biol Macromol ; 209(Pt B): 1593-1604, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35398386

ABSTRACT

Chronic nonbacterial prostatitis (CNP) is a common urology disease. Our previous research found Poria cocos polysaccharides (PPs) alleviated CNP and suggested the effect was related to gut bacteria. We investigated the crucial bacteria and their metabolites responsible for the anti-CNP effect to discover possible mechanisms. The results showed that after the fermentation of PPs by human fecal microbiota, Parabacteroides, Fusicatenibacter, and Parasutterella were significantly enriched. Haloperidol glucuronide and 7-ketodeoxycholic acid generated by these bacteria could be responsible for the increased expression of Alox15 and Pla2g2f and the reduced expression of Cyp1a1 and Hsd17b7 in colon epithelium. The ratio of dihydrotestosterone to estradiol in serum was regulated, and CNP was alleviated. Our results suggested that Parabacteroides, Fusicatenibacter, and Parasutterella could be the essential bacteria in CNP alleviation and their metabolites of PPs 7-ketodeoxycholic acid and haloperidol glucuronide could be the signal molecules of the "gut-prostate axis".


Subject(s)
Gastrointestinal Microbiome , Poria , Prostatitis , Wolfiporia , Animals , Bacteria , Dietary Carbohydrates/pharmacology , Glucuronides , Haloperidol/pharmacology , Humans , Male , Polysaccharides/pharmacology , Prostatitis/drug therapy , Prostatitis/metabolism , Prostatitis/microbiology , Rats
12.
Int J Biol Macromol ; 209(Pt A): 153-161, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35318077

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease with a high incidence. Recent studies have demonstrated that diet can contribute to the development and progression of RA. Indeed, non-starch polysaccharides (NSPs) were known to be related to the improvement of RA. In this study, the collagen-induced rats were administrated with Angelica sinensis polysaccharide (ASP) at 200 mg/kg (L), 400 mg/kg (M), or 800 mg/kg (H). Results showed that ASP could reduce joint swelling and significantly inhibit anti-CII-antibodies and pro-inflammatory factors in RA, H group showed the best treatment among them. Further analysis using 16S rDNA sequencing suggested that ASP could shape the gut microbiota composition. Several key bacteria, including norank_f__norank_o__Clostridia_UCG-014, Lactobacillus, norank_f__Oscillospiraceae, and norank_f__Desulfovibrionaceae, were found to be related to the development of RA. The colonic transcriptome showed that ASP could restore RA-induced intestinal dysfunction, such as tight junction disarrangement, by upregulating Cldn5. The balance between osteoblasts and osteoclasts might be modified by regulating the expression of Slit3 and Rgs18 to alleviate RA, which may be correlated with gut microbiota. Our results suggested that ASP improved RA by regulating gut microbiota and gene expression, revealing a positive relationship between dietary patterns and RA.


Subject(s)
Angelica sinensis , Arthritis, Rheumatoid , Claudin-5 , Gastrointestinal Microbiome , RGS Proteins , Angelica sinensis/chemistry , Angelica sinensis/metabolism , Animals , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Claudin-5/biosynthesis , Claudin-5/genetics , Intestines/metabolism , Intestines/microbiology , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Polysaccharides/pharmacology , RGS Proteins/biosynthesis , RGS Proteins/genetics , Rats
13.
Food Funct ; 13(3): 1437-1446, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35048932

ABSTRACT

Lipid metabolism is closely related to the health of aging bodies and its disorder often leads to cardiovascular diseases and chronic diseases. Dietary fat is one of the important sources of body fat, which affects the body's lipid metabolism. However, how dietary fat affects lipid metabolism in aging bodies has not been reported. Thus, the effects of soybean diacylglycerol (DAG) on lipid metabolism in D-galactose-induced aging rats were investigated by detecting the serum biochemical indexes, hepatocyte morphology, gut microbiota changes, and gene expression of colonic epithelial cells. The results showed that DAG alleviated the lipid metabolism disorders, and the hepatocyte morphology of aging rats fed DAG was normal. 16S rDNA analysis showed that DAG restored Eisenbergiella and Veillonella that were missing in aging rats. The relative abundances of Romboutsia and Ruminococcus_2 decreased and the relative abundance of Lachnospiraceae NK4A136 group increased significantly with the influence of DAG (P < 0.05). Gene expression profiles showed that the gene expression of colon epithelial cells was altered by DAG and DAG downregulated the genes Lipe and Fabp4 related to the lipolysis of adipocytes. In conclusion, DAG regulated the lipid metabolism of aging rats by regulating gut microbiota and gene expression of colonic epithelial cells.


Subject(s)
Aging , Colon/metabolism , Diglycerides/pharmacology , Glycine max , Lipid Metabolism/drug effects , Animals , Disease Models, Animal , Epithelial Cells/drug effects , Galactose , Gastrointestinal Microbiome/drug effects , Gene Expression/drug effects , Male , Rats , Rats, Sprague-Dawley
14.
Crit Rev Food Sci Nutr ; 62(30): 8319-8334, 2022.
Article in English | MEDLINE | ID: mdl-34036843

ABSTRACT

There is a growing scientific view that the improvement of cancer by nonstarch polysaccharides (NSPs) is mediated by intestinal microbiota. Intestinal bacteria affect the supply of methyl donor substances and influence N6-methyladenosine (m6A) RNA methylation. As one of the epigenetic/epitranscriptomic modifications, m6A RNA methylation is closely related to the initiation and progression of cancers. This review summarizes the cancer-improving effects of NSPs through modulation of intestinal microbiota. It also summarizes the relationship between intestinal bacteria and the supply of methyl donor substances. Moreover, it also provides a summary of the effects of m6A RNA methylation on various types of cancer. The proposed mechanism is that, dietary consumed NSPs are utilized by specific intestinal bacteria and further reshape the microbial structure. Methyl donor substances will be directly or indirectly generated by the reshaped-microbiota, and affect the m6A RNA methylation of cancer-related and pro-carcinogenic inflammatory cytokine genes. Therefore, NSPs may change the m6A RNA methylation by affecting the methyl donor supply produced by intestinal microbiota and ameliorate cancer. This review discussed the possibility of cancer improvement of bioactive NSPs achieved by impacting RNA methylation via the intestinal microbiota, and it will offer new insights for the application of NSPs toward specific cancer prevention.


Subject(s)
Gastrointestinal Microbiome , Neoplasms , Humans , Methylation , Polysaccharides , Neoplasms/prevention & control , Neoplasms/genetics , RNA/genetics
15.
Int J Biol Macromol ; 189: 346-355, 2021 Oct 31.
Article in English | MEDLINE | ID: mdl-34428489

ABSTRACT

Finasteride is an antiandrogenic drug used for the clinical treatment of chronic nonbacterial prostatitis (CNP). Recently, we reported the anti-CNP activity of Poria cocos polysaccharides (PPs) in a rat model. In this study, we compared the differences between PPs and finasteride in treating CNP, especially their effects on the gut microbiota. Results showed that both PPs and finasteride significantly reduced the prostate weight and prostate index of CNP rats, and improved the histological damages in the inflamed prostate. Moreover, PPs and finasteride inhibited the production of pro-inflammatory cytokines (TNF-α, IL-2 and IL-8) and androgens (dihydrotestosterone and testosterone). By 16S rDNA sequencing, PPs and finasteride were found to reprogram the gut microbiota into distinct profiles. Further analysis presented that PPs but not finasteride recovered CNP-induced changes in the gut microbiota, including Ruminococcaceae NK4A214 group, uncultured bacterium f Ruminococcaceae, Ruminiclostridium 9, Phascolarctobacterium, Coriobacteriaceae UCG-002 and Oribacterium. LDA effect size (LEfSe) analysis revealed that PPs recovered the gut microbiota by targeting Ruminococcaceae NK4A214 group. Our results suggested that PPs alleviated CNP via different mechanisms from finasteride, especially by regulating the gut microbiota, which offers therapeutic target for the treatment of CNP.


Subject(s)
Finasteride/therapeutic use , Gastrointestinal Microbiome , Polysaccharides/therapeutic use , Prostatitis/drug therapy , Prostatitis/microbiology , Wolfiporia/chemistry , Androgens/metabolism , Animals , Biomarkers/metabolism , Chronic Disease , Cytokines/metabolism , Finasteride/pharmacology , Gastrointestinal Microbiome/drug effects , Inflammation Mediators/metabolism , Male , Organ Size/drug effects , Phylogeny , Prostate/drug effects , Prostate/pathology , Rats, Sprague-Dawley
16.
Food Sci Nutr ; 9(4): 2158-2168, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33841832

ABSTRACT

Taisui, a special substance occasionally found in China, can now be artificially cultured. In order to evaluate the safety of an artificially cultured Taisui (acTS) and develop it into fermented, functional food or oral liquid, the macronutrients, trace elements, microbial community, and extracellular metabolites of Taisui have been investigated in this study. Results showed that the concentrations of total carbohydrates, protein, fat, total ash, and moisture of wet acTS were 2.13 g/100 g, 0.13 g/100 g, 0.07 g/100 g, 0.04 g/100 g, and 88.3%, respectively. The concentrations of top three trace elements of K, Ca, and P, are 1,424.92 mg/kg, 159.96 mg/kg, and 67.89 mg/kg, respectively. Proteobacteria, Euryarchaeota, and Ascomycota were the dominant phyla of bacteria, archaea, and fungi, respectively. Uncultured_bacterium_f_Anaerolineaceae, Alcaligenes, and Ochrobactrum were the three most abundant genera of bacteria; Methanosaeta, Methanosphaera, and Natronomonas, the most abundant genera of archaea; Zygosaccharomyces, Mortierella, and Fusarium, the most abundant genera of fungi. There were 311 metabolites increased in acTS. Most of the metabolites are beneficial to human. These metabolites can be contributed to microbes in acTS. In conclusion, acTS is not a good source of macronutrients and of trace elements, while the safeness of some microorganisms in acTS is also unknown. Nevertheless, it still provides some probiotics and beneficial metabolites for human. It is thus possible to develop acTS into foods when the safety of each microorganism is proved.

17.
Food Funct ; 12(10): 4458-4470, 2021 May 21.
Article in English | MEDLINE | ID: mdl-33881125

ABSTRACT

Researchers have noted that organ-organ communication between bone and intestine has significant effects on bone health and its related diseases. In this study, we collected colonic epithelial tissue from dexamethasone-induced osteoporotic rats and Astragalus polysaccharide (APS)-alleviated osteoporotic rats and employed transcriptome sequencing to investigate the functional changes that occurred in the intestine. Principal component analysis showed that both dexamethasone (inducer of osteoporosis) and APS reprogrammed the gene expression profile of the intestine. Further analysis identified 496 and 291 differentially expressed genes (DEGs) in osteoporotic and APS-treated osteoporotic rats, respectively. KEGG enrichment analysis of these DEGs demonstrated osteoporosis-induced intestinal dysfunctions that were further modified by APS treatment. Further analysis demonstrated that APS could restore intestinal functions by reversing the expression of 53 DEGs in osteoporotic rats. Recovery of osteoclast differentiation and the calcium signalling pathway might contribute to the improvement of osteoporosis. Moreover, utilizing methylC-capture sequencing (MCC-Seq), we studied the changes in DNA methylation and performed epigenetic analysis of dexamethasone- and APS-induced gene expression changes. In this study, osteoporosis was observed to cause intestinal dysfunction, which is a complication of this disease. More importantly, APS was determined to reprogram intestinal functions to alleviate osteoporosis via the gut-bone axis. Our results support the existence of a gut-bone axis and suggest new therapeutic opportunities for the treatment of osteoporosis via the gut-bone axis.


Subject(s)
Astragalus Plant/chemistry , Bone and Bones/metabolism , DNA/metabolism , Osteoporosis/drug therapy , Polysaccharides/pharmacology , Transcriptome/drug effects , Animals , Astragalus propinquus/chemistry , DNA Methylation/drug effects , Dietary Carbohydrates , Disease Models, Animal , Female , Gene Expression/drug effects , Polysaccharides/therapeutic use , Protein Interaction Maps , Rats , Rats, Sprague-Dawley
18.
Food Res Int ; 139: 109920, 2021 01.
Article in English | MEDLINE | ID: mdl-33509487

ABSTRACT

Obesity and its related metabolic disorders have been a global pandemic. Recently, we found an anti-obesity effect of flaxseed polysaccharide (FP) that could be achieved by regulating intestinal microbiota. The anti-obesity effect of FP is mainly attributed to the metabolites produced by the interaction with FP, which remains to be elucidated. In this research, the in vitro effects of metabolites of FP fermented by fecal bacteria on energy metabolism and adipogenesis were investigated. The effect of energy metabolism was analyzed by mRNA and protein expression of the intestinal glucose transporters, including sodium dependent glucose transporter (SGLT1) and glucose transporter 2 (GLUT2), and glucose uptake in intestinal Caco-2 cells. The lipogenic effect were evaluated by Oil red O staining of intracellular lipid droplets and the mRNA and protein expression of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT-enhancer-binding proteins (C/EBP) α and ß in 3T3-L1 cells. The results showed the metabolites significantly inhibited glucose intake through downregulating the mRNA and protein expression of GLUT2 and SGLT1 in Caco-2 cells. Besides, they also led to the decrease of lipid accumulation through downregulating the mRNA and protein expression of PPARγ, C/EBPα, and C/EBPß in differentiating adipocytes. The inhibitory effects on energy intake and adipogenesis were concentration dependent, and metabolites at physiological concentration showed the most significant effect. Metabolites of fecal bacteria fermenting FP inhibited energy intake and adipogenesis at physiological concentration, which might be one of the weight-loss mechanisms of FP-diet.


Subject(s)
Adipogenesis , Flax , 3T3-L1 Cells , Animals , Bacteria , Caco-2 Cells , Energy Intake , Fermentation , Humans , Mice , Polysaccharides
19.
Front Physiol ; 12: 753034, 2021.
Article in English | MEDLINE | ID: mdl-35087414

ABSTRACT

Chronic non-bacterial prostatitis (CNP) is one of the most prevalent diseases in human males worldwide. In 2005, the prostate-gut axis was first proposed to indicate the close relationship between the prostate and the intestine. This study investigated CNP-induced changes of the gut microbiota, gene expression and DNA methylation in a rat model by using multi-omics analysis. Firstly, 16S rDNA sequencing presented an altered structure of the microbiota in cecum of CNP rats. Then, transcriptomic analysis revealed that the expression of 185 genes in intestinal epithelium was significantly changed by CNP. These changes can participate in the immune system, digestive system, metabolic process, etc. Finally, methylC-capture sequencing (MCC-Seq) found 73,232 differentially methylated sites (DMSs) in the DNA of intestinal epithelium between control and CNP rats. A combined analysis of methylomics and transcriptomics suggested an epigenetic mechanism for CNP-induced differential expression genes correlated with intestinal barrier function, immunity, metabolism, enteric infectious disease, etc. More importantly, the transcriptomic, methylomic and gut microbial changes were highly correlated with multiple processes including intestinal immunity, metabolism and epithelial barrier function. In this study, disrupted homeostasis in the gut microbiota, gene expression and DNA methylation were reported in CNP, which supports the existence of the gut-prostate axis.

20.
J Agric Food Chem ; 68(52): 15449-15459, 2020 Dec 30.
Article in English | MEDLINE | ID: mdl-33320666

ABSTRACT

DNA methylation is an epigenetic event that plays critical roles in the pathogenesis, progression, and treatment of human diseases. In this study, we investigated the epigenetic mechanisms for Astragalus polysaccharide (APS)-improved osteoporosis in a rat model. The results showed that APS significantly changed the DNA methylome in colonic epithelia with great efficiency. Gene set enrichment analysis (GSEA) based on differentially methylated sites (DMSs) revealed that APS caused promoter DNA methylation changes of genes associated with calcium homeostasis, osteoclast/osteoblast balance, Wnt signaling, and hormone-related processes. Further analysis showed high consistency of APS-induced gene methylomic changes in colonic epithelia and its effects on diabetes, virus infection, and wound healing, which had been reported already. Moreover, we suggested new functions and the involved mechanisms of APS in heart disease, neurological disorder, reproductive problem, and olfactory dysfunction. In this study, we offered epigenetic mechanisms for APS-improved osteoporosis. More importantly, we proposed and proved a reliable method to explore the beneficial effects of bioactive polysaccharides by studying DNA methylation changes at nonfocal sites. We firmly believed the promising prospects of this method for its great efficiency, rapidness, and economy in exploring possible beneficial or therapeutic effects of functional macromolecules with one single experiment.


Subject(s)
Astragalus Plant/chemistry , Drugs, Chinese Herbal/administration & dosage , Osteoporosis/drug therapy , Polysaccharides/administration & dosage , Animals , Calcium/metabolism , DNA Methylation/drug effects , Disease Models, Animal , Drugs, Chinese Herbal/chemistry , Epigenesis, Genetic/drug effects , Epigenome/drug effects , Female , Humans , Osteoporosis/genetics , Osteoporosis/metabolism , Pilot Projects , Polysaccharides/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...