Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biotechnol Lett ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733437

ABSTRACT

Chiral epichlorohydrin (ECH) is an attractive intermediate for chiral pharmaceuticals and chemicals preparation. The asymmetric synthesis of chiral ECH using 1,3-dicholoro-2-propanol (1,3-DCP) catalyzed by a haloalcohol dehalogenase (HHDH) was considered as a feasible approach. However, the reverse ring opening reaction caused low optical purity of chiral ECH, thus severely restricts the industrial application of HHDHs. In the present study, a novel selective conformation adjustment strategy was developed with an engineered HheCPS to regulate the kinetic parameters of the forward and reverse reactions, based on site saturation mutation and molecular simulation analysis. The HheCPS mutant E85P was constructed with a markable change in the conformation of (S)-ECH in the substrate pocket and a slight impact on the interaction between 1,3-DCP and the enzyme, which resulted in the kinetic deceleration of the reverse reactions. Compared with HheCPS, the catalytic efficiency (kcat(S)-ECH/Km(S)-ECH) of the reversed reaction dropped to 0.23-fold (from 0.13 to 0.03 mM-1 s-1), while the catalytic efficiency (kcat(1,3-DCP)/Km(1,3-DCP)) of the forward reaction only reduced from 0.83 to 0.71 mM-1 s-1. With 40 mM 1,3-DCP as substrate, HheCPS E85P catalyzed the synthesis of (S)-ECH with the yield up to 55.35% and the e.e. increased from 92.54 to >99%. Our work provided an effective approach for understanding the stereoselective catalytic mechanism as well as the green manufacturing of chiral epoxides.

2.
Chembiochem ; : e202400105, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639074

ABSTRACT

Cell senescence is defined as irreversible cell cycle arrest, which can be triggered by telomere shortening or by various types of genotoxic stress. Induction of senescence is emerging as a new strategy for the treatment of cancer, especially when sequentially combined with a second senolytic drug capable of killing the resulting senescent cells, however severely suffering from the undesired off-target side effects from the senolytic drugs. Here, we prepare a bimetalic platinum-aluminum salen complex (Alumiplatin) for cancer therapy-a combination of pro-senesence chemotherapy with in situ senotherapy to avoid the side effects. The aluminum salen moiety, as a G-quadruplex stabilizer, enhances the salen's ability to induce cancer cell senescence and this phenotype is in turn sensitive to the cytotoxic activity of the monofunctional platinum moiety. It exhibits an excellent capability for inducing senescence, a potent cytotoxic activity against cancer cells both in vitro and in vivo, and an improved safety profile compared to cisplatin. Therefore, Alumiplatin may be a good candidate to be further developed into safe and effective anticancer agents. This novel combination of cell senescence inducers with genotoxic drugs revolutionizes the therapy options of designing multi-targeting anticancer agents to improve the efficacy of anticancer therapies.

3.
Microb Cell Fact ; 23(1): 33, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267983

ABSTRACT

Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Intestinal Mucosa , Homeostasis , Amino Acids
4.
Angew Chem Int Ed Engl ; 62(36): e202307838, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37452698

ABSTRACT

The gallium ion (Ga3+ ) has long been believed to disrupt ferric homeostasis in the body by competing with iron cofactors in metalloproteins, ultimately leading to cell death. This study revealed that through an indirect pathway, gallium can trigger ferroptosis, a type of non-apoptotic cell death regulated by iron. This is exemplified by the gallium complex of the salen ligand (Ga-1); we found that Ga-1 acts as an effective anion transporter that can affect the pH gradient and change membrane permeability, leading to mitochondrial dysfunction and the release of ferrous iron from the electron transfer chain (ETC). In addition, Ga-1 also targeted protein disulfide isomerases (PDIs) located in the endoplasmic reticulum (ER) membrane, preventing the repair of the antioxidant glutathione (GSH) system and thus enforcing ferroptosis. Finally, a combination treatment of Ga-1 and dietary polyunsaturated fatty acids (PUFAs), which enhances lipid peroxidation during ferroptosis, showed a synergistic therapeutic effect both in vitro and in vivo. This study provided us with a strategy to synergistically induce Ferroptosis in tumor cells, thereby enhancing the anti-neoplastic effect.


Subject(s)
Ferroptosis , Cell Death , Iron/metabolism , Lipid Peroxidation , Antioxidants/metabolism , Glutathione/metabolism
5.
Nature ; 610(7933): 661-666, 2022 10.
Article in English | MEDLINE | ID: mdl-36198794

ABSTRACT

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

6.
Angew Chem Int Ed Engl ; 61(28): e202204330, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35445526

ABSTRACT

Photodynamic therapy (PDT) is a non-invasive treatment modality against a range of cancers and nonmalignant diseases, however one must be aware of the risk of causing phototoxic reactions after treatment. We herein report a bioinspired design of next-generation photosensitizers (PSs) that not only effectively produce ROS but undergo fast metabolism after treatment to overcome undesirable side effects. We constructed a series of ß-pyrrolic ring-opening seco-chlorins, termed beidaphyrin (BP), beidapholactone (BPL), and their zinc(II) derivatives (ZnBP and ZnBPL), featuring intense near-infrared absorption and effective O2 photosensitization. Irradiation of ZnBPL led to a non-cytotoxic, metabolizable beidaphodiacetamide (ZnBPD) via in situ generated O2.- but not 1 O2 , as revealed by mechanistic studies including time-resolved absorption, kinetics, and isotope labeling. Furthermore, water-soluble ZnBPL showed an effective therapeutic outcome, fast metabolism, and negligible phototoxic reactions.


Subject(s)
Neoplasms , Photochemotherapy , Porphyrins , Humans , Neoplasms/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use
7.
Front Microbiol ; 12: 626691, 2021.
Article in English | MEDLINE | ID: mdl-33708183

ABSTRACT

Repeated stress-related diarrhea is a kind of functional bowel disorders (FBDs) that are mainly stemming from dysregulation of the microbiota-gut-brain axis mediated by a complex interplay of 5-hydroxytryptophan (5-HT). Intestinal content and intestinal mucosa microbiota belong to two different community systems, and the role of the two microbiota community systems in repeated stress-related diarrhea remains largely unknown. In order to ascertain the difference in composition and the potential function between intestinal content and intestinal mucosa microbiota response on repeated stress-related diarrhea, we collected intestinal contents and mucosa of mice with repeated stress-related diarrhea for 16S rRNA PacBio SMRT gene full-length sequencing, and with the digital modeling method of bacterial species abundance, the correlations among the two microbiota community systems and serum 5-HT concentration were analyzed. We found that the microbiotal composition differences both in intestinal contents and mucosa were consistent throughout all the phylogenetic ranks, with an increasing level of resolution. Compared with intestinal content microbiota, the diversity and composition of microbiota colonized in intestinal mucosa are more sensitive to repeated stress-related diarrhea. The PICRUSt2 of metagenomic function analysis found that repeated stress-related diarrhea is more likely to perturb the intestinal mucosa microbiota metagenomic functions involved in the neural response. We further found that the mucosal microbiota-based relative abundance model was more predictive on serum 5-HT concentration with the methods of machine-learning model established and multivariate dimensionality reduction (R 2 = 0.876). These findings suggest that the intestinal mucosa microbiota might serve as a novel potential prediction model for the serum 5-HT concentration involvement in the repeated stress-related diarrhea, in addition to focusing on its mechanism in the gastrointestinal dysfunction.

8.
Biosens Bioelectron ; 170: 112662, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33032198

ABSTRACT

Cancer cell enumeration and phenotyping can predict the prognosis and the therapy efficacy in patients, yet it remains challenging to detect the rare tumor cells. Herein, we report an octopus-inspired, bifunctional aptamer signal amplifier-based cytosensor (OApt-cytosensor) for sensitive cell analysis. By assembling high-affinity antibodies on an electrode surface, the target cells could be specifically captured and thus been sandwiched by the cell surface marker-specific DNA aptamers. These on-cell aptamers function as electrochemical signal amplifiers by base-selective electronic doping with methylene blue. Such a sandwich configuration enables highly sensitive cell detection down to 10 cells/mL (equal to ~1-2 cells at a sampling volume of 150 µL), even in a large excess of nontarget blood cells. This approach also reveals the cell-surface markers and tracks the cellular epithelial-to-mesenchymal transition induced by signaling regulators. Furthermore, the electron-doped aptamer shows remarkable cell fluorescent labeling that guides the release of the captured cells from electrode surface via electrochemistry. These features make OApt-cytosensor a promising tool in revealing the heterogeneous cancer cells and anticancer drug screening at the single-cell level.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemistry , Electrodes , Electrons , Gold , Humans
9.
ACS Sens ; 5(8): 2514-2522, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32664724

ABSTRACT

MicroRNA (MiRNA)-based noninvasive diagnostics are hampered by the challenge in the quantification of circulating miRNAs using a general strategy. Here, we present a base-stacking effect-mediated ultrasensitive electrochemical miRNA sensor (BSee-miR) with a universal sandwich configuration. In the BSee-miR, a short DNA probe (10 nucleotides) self-assembled on a gold electrode surface could effectively capture the target miRNA synergizing with another sequence based on coaxial sandwich base-stacking, which rivals the fully complementary strength. Importantly, such a sandwich structure is flexible to incorporate signal amplification strategies (e.g., biotin-avidin) that are usually difficult to achieve in short sequence detection. Using this design, the BSee-miR achieves a broad dynamic range with a detection limit down to 7.5 fM. Furthermore, we found a high-curvature nanostructuring synergetic base-stacking effect that could improve the sensitivity of the BSee-miR by two orders of magnitude (79.3 aM). Our BSee-miR also has a single-base resolution to discriminate the highly homologous miRNAs. More importantly, this approach is universal and has been used to probe target miRNAs varying in sequences and secondary structures. Our ultrasensitive sensor could detect miRNA in cell lysates and human blood and distinguish cancer patients from normal individuals, promising a versatile tool to measure clinically relevant miRNAs for tumor diagnostics.


Subject(s)
MicroRNAs , DNA Probes/genetics , Electrodes , Gold , Humans , Limit of Detection
10.
Anal Chem ; 92(14): 9877-9886, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32551501

ABSTRACT

Exosome-associated liquid biopsies are hampered by challenges in the exosomal quantification and phenotyping. Here, we present a bioinspired exosome-activated DNA molecular machine (ExoADM) with multivalent cyclic amplification that enables highly sensitive detection and phenotyping of circulating exosomes. ExoADM harbors two (an exposed and a hidden) DNA toehold domains that actuate sequential branch migration and multivalent recycling in response to exosomal surface markers. Importantly, this self-powered ExoADM achieves a high sensitivity (33 particles/µL) and is compatible with another DNA nanomachine targeting different exosomal surface markers for dual-color phenotyping. Using this strategy, we can simultaneously track the dynamic changes of ExoPD-L1 and ExoCD63 expression induced by signaling molecules. Further, we found that their expression levels on circulating exosomes could well differentiate cancer patients from the normal individuals. More importantly, ExoPD-L1 levels could reflect the efficacy of different treatments and guide anti-PD-1 immunotherapy, suggesting the potential of ExoPD-L1 in clinical diagnosis and targeted therapy monitoring.


Subject(s)
B7-H1 Antigen/metabolism , DNA/chemistry , Exosomes/chemistry , Nanotechnology , Neoplasms/classification , Antineoplastic Agents/therapeutic use , Cell Line , Chemical Engineering , Humans , Neoplasms/drug therapy
11.
J Inorg Biochem ; 209: 111118, 2020 08.
Article in English | MEDLINE | ID: mdl-32502875

ABSTRACT

Near Infrared (NIR) imaging agents are extensively used in the biological or preclinical treatment and diagnosis of a wide range of diseases including cancers and tumors. The current arsenal of NIR compounds are most constituted by organic dyes, polymers, inorganic nanomaterials, whereas Ln molecular complexes explore an alternative approach to design NIR probes that are potentially bring new molecular toolkits into the biomedicine. In this review, NIR imaging agents are categorized according to their molecular sizes, constitution and the key properties and features of each class of compounds are briefly defined wherever possible. To better elucidate the features of Ln complexes, we provide a succinct understanding of sensitization process and molecular Ln luminescence at a mechanistic level, which may help to deliver new insights to design NIR imaging probes. Finally, we used our work on NIR ytterbium (Yb3+) probes as an example to raise awareness of exploring biologically relevant chemical space for lanthanide complexes as chemical entities for biological activity.


Subject(s)
Coordination Complexes/chemistry , Lanthanoid Series Elements/chemistry , Spectroscopy, Near-Infrared/methods , Humans , Luminescence , Luminescent Agents/chemistry , Ytterbium/chemistry
12.
Anal Chem ; 91(20): 13198-13205, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31553171

ABSTRACT

Exosomal microRNAs are essential in intercellular communications and disease progression, yet it remains challenging to quantify the expression level due to their small size and low abundance in blood. Here, we report a "sandwich" electrochemical exosomal microRNA sensor (SEEmiR) to detect target microRNA with high sensitivity and specificity. In SEEmiR, neutrally charged peptide nucleic acid (PNA) enables kinetically favorable hybridization with the microRNA target relative to negatively charged DNA, particularly in a short sequence (10 nt). More importantly, this property allows PNA to cooperate with a spherical nucleic acid (SNA) nanoprobe that heavily loads with oligonucleotide-adsorbed electroactive tags to enhance detection sensitivity and specificity. Such a PNA-microRNA-SNA sandwich construct is able to minimize the background noise via PNA, thereby maximizing the SNA-mediated signal amplification in electrostatic adsorption-based SEEmiR. The synergy between PNA and SNA makes the SEEmiR sensor able to achieve a broad dynamic range (from 100 aM to 1 nM) with a detection limit down to 49 aM (2 orders of magnitude lower than that without SNA) and capable of distinguishing a single-base mismatch. This ultrasensitive sensor provides label-free and enzyme-independent microRNA detection in cell lysates, unpurified tumor exosomal lysates, cancer patients' blood, and accurately differentiates the patients with breast cancer from the healthy ones, suggesting its potential as a promising tool in cancer diagnostics.


Subject(s)
Electrochemical Techniques/methods , Exosomes/chemistry , MicroRNAs/blood , Peptide Nucleic Acids/chemistry , Cell Line, Tumor , Gold/chemistry , Humans , Limit of Detection , Metal Nanoparticles/chemistry , MicroRNAs/genetics , Nucleic Acid Hybridization , Peptide Nucleic Acids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...