Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Curr Med Sci ; 44(2): 399-405, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38632142

ABSTRACT

OBJECTIVE: Complete resection of malignant gliomas is often challenging. Our previous study indicated that intraoperative contrast-enhanced ultrasound (ICEUS) could aid in the detection of residual tumor remnants and the total removal of brain lesions. This study aimed to investigate the survival rates of patients undergoing resection with or without the use of ICEUS and to assess the impact of ICEUS on the prognosis of patients with malignant glioma. METHODS: A total of 64 patients diagnosed with malignant glioma (WHO grade HI and IV) who underwent surgery between 2012 and 2018 were included. Among them, 29 patients received ICEUS. The effects of ICEUS on overall survival (OS) and progression-free survival (PFS) of patients were evaluated. A quantitative analysis was performed to compare ICEUS parameters between gliomas and the surrounding tissues. RESULTS: The ICEUS group showed better survival rates both in OS and PFS than the control group. The univariate analysis revealed that age, pathology and ICEUS were significant prognostic factors for PFS, with only age being a significant prognostic factor for OS. In multivariate analysis, age and ICEUS were significant prognostic factors for both OS and PFS. The quantitative analysis showed that the intensity and transit time of microbubbles reaching the tumors were significantly different from those of microbubbles reaching the surrounding tissue. CONCLUSION: ICEUS facilitates the identification of residual tumors. Age and ICEUS are prognostic factors for malignant glioma surgery, and use of ICEUS offers a better prognosis for patients with malignant glioma.


Subject(s)
Brain Neoplasms , Glioma , Humans , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Glioma/diagnostic imaging , Glioma/surgery , Ultrasonography , Prognosis , Survival Analysis
2.
Diabetol Metab Syndr ; 16(1): 71, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38515175

ABSTRACT

BACKGROUND: Regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and immune regulation. Clinical trials on the adoptive transfer of Tregs have been ongoing for > 10 years. However, many unresolved issues remain in the production of readymade Treg products and selection of patients. Hence, this study aimed to develop a method to expand off-the-shelf Tregs derived from umbilical cord blood (UCB-Tregs) in vitro without changing their phenotype and inhibitory function. In addition, the study intended to design an approach to precisely select patients who are more likely to benefit from the adoptive Treg transfer therapy. METHODS: UCB-Tregs were isolated and cultured in a medium containing human recombinant IL-2 and rapamycin and then multiply restimulated with human T-activator CD3/CD28 dynabeads. The phenotype and suppressive capacity of Tregs were assessed on days 18 and 42. The relationship between the suppressive function of UCB-Tregs in vitro and clinical indicators was analyzed, and the ability of the in vitro suppressive capacity to predict the in vivo therapeutic effects was evaluated. RESULTS: UCB-Tregs expanded 123-fold and 5,981-fold at 18 and 42 days, respectively. The suppressive function of UCB-Tregs on the proliferation of immune cells at 42 days was not significantly different compared with that of UCB-Tregs obtained at 18 days. The suppression rate of UCB-Tregs to PBMCs was negatively correlated with the course of diabetes. Moreover, the high-suppression group exhibited a better treatment response than the low-suppression group during the 12-month follow-up period. CONCLUSIONS: Multiply restimulated UCB-Tregs expanded at a large scale without any alterations in their classical phenotypic features and inhibitory functions. The suppressive function of Tregs in vitro was negatively correlated with the disease duration. The present study revealed the possibility of predicting the in vivo therapeutic effects via the in vitro inhibition assay. Thus, these findings provided a method to obtain off-the-shelf Treg products and facilitated the selection of patients who are likely to respond to the treatment, thereby moving toward the goal of precision treatment.

3.
Chempluschem ; 89(1): e202300545, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37884457

ABSTRACT

Synthesis of 2,5-furandicarboxylic acid (FDCA) can be achieved via catalytic oxidation of 5-hydroxymethylfurfural (5-HMF), in which both base and catalyst play important roles. This work presents the development of a simple synthesis method (based on a commercial parent 10 wt.% Pd/C catalyst) to prepare the bimetallic AuPd alloy catalysts (i. e., AuPd/C) for selective 5-HMF oxidation to FDCA. When using the strong base of NaOH, Pd and Au cooperate to promote FDCA formation when deployed either separately (as a physical mixture of the monometallic Au/C and Pd/C catalysts) or ideally alloyed (AuPd/C), with complete 5-HMF conversion and FDCA yields of 66 % vs 77 %, respectively. However, NaOH also promoted the formation of undesired by-products, leading to poor mass balances (<81 %). Comparatively, under weak base conditions (using NaHCO3 ), an increase in Au loading in the AuPd/C catalysts enhances 5-HMF conversion and FDCA productivity (due to the enhanced carbonyl oxidation capacity) which coincides with a superior mass balances of >97 %. Yet, the excessive Pd content in the AuPd/C catalysts was not beneficial in promoting FDCA formation.

4.
Oncogene ; 42(50): 3684-3697, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37903896

ABSTRACT

Regulator of chromosome condensation domain-containing protein 1 (RCCD1), previously reported as a partner of histone H3K36 demethylase KDM8 involved in chromosome segregation, has been identified as a potential driver for breast cancer in a recent transcriptome-wide association study. We report here that, unexpectedly, RCCD1 is also localized in mitochondria. We show that RCCD1 resides in the mitochondrial matrix, where it interacts with the mitochondrial contact site/cristae organizing system (MICOS) and mitochondrial DNA (mtDNA) to regulate mtDNA transcription, oxidative phosphorylation, and the production of reactive oxygen species. Interestingly, RCCD1 is upregulated under hypoxic conditions, leading to decreased generation of reactive oxygen species and alleviated apoptosis favoring cancer cell survival. We show that RCCD1 promotes breast cancer cell proliferation in vitro and accelerates breast tumor growth in vivo. Indeed, RCCD1 is overexpressed in breast carcinomas, and its level of expression is associated with aggressive breast cancer phenotypes and poor patient survival. Our study reveals an additional dimension of RCCD1 functionality in regulating mitochondrial homeostasis, whose dysregulation inflicts pathologic states such as breast cancer.


Subject(s)
Breast Neoplasms , Mitochondria , Humans , Female , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Breast Neoplasms/pathology , Hypoxia/metabolism , Carcinogenesis/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Carrier Proteins/metabolism , Membrane Proteins/genetics , Histone Demethylases/metabolism
5.
BMC Urol ; 23(1): 172, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891515

ABSTRACT

PURPOSE: This study aimed to assess the impact of perioperative care based on the Roy Adaptation Model (RAM) on psychological well-being, postoperative pain, and health-related quality of life (HRQoL) in elderly patients with benign prostatic hyperplasia (BPH) undergoing transurethral resection of the prostate (TURP). METHODS: A total of 160 elderly patients diagnosed with BPH between June 2021 and June 2022 and scheduled for TURP were randomly assigned to either the routine care group (n = 80) or the RAM group (n = 80). The RAM group received standard care supplemented with interventions based on the RAM model. Negative emotions measured by the Hospital Anxiety and Depression Scale (HADS), pain intensity by the Visual Analog Scale (VAS), and HRQoL by the 36-Item Short Form Health Survey (SF-36) were measured at the preoperative visit (T0), at 30 days (T1), and at 3 months of (T2) follow­up. RESULTS: Repeated measures ANOVA revealed significant differences in psychological well-being, postoperative pain intensity, and HRQoL within both the routine care and RAM groups across the three time points. Holm-Sidak's multiple comparisons test confirmed significant differences between each time point for both groups. The RAM intervention led to significant reductions in anxiety and depression levels, alleviation of postoperative pain intensity, and improvements in various domains of HRQoL at T1 and T2 compared to routine care. CONCLUSION: Incorporating the RAM model into perioperative care for elderly patients undergoing TURP for BPH has shown promising results in improving psychological well-being, reducing postoperative pain intensity, and enhancing HRQoL.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Male , Humans , Aged , Quality of Life , Transurethral Resection of Prostate/methods , Prostatic Hyperplasia/surgery , Psychological Well-Being , Pain, Postoperative , Perioperative Care , Treatment Outcome
6.
Cell Rep ; 42(11): 113343, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37906592

ABSTRACT

The intrinsic regulation of programmed death ligand-1 (PD-L1) expression remains unclear. Here, we report that zinc-finger protein 652 (ZNF652) is a potent transcription repressor of PD-L1. ZNF652 frequently experiences loss of heterozygosity (LOH) in various cancers. Higher LOH rate and lack of estrogen-inducible transcription lead to suppressed expression of ZNF652 in triple-negative breast cancer (TNBC). Mechanistically, ZNF652 is physically associated with the NuRD transcription co-repressor complex to repress a cohort of genes, including PD-L1. Overexpression of ZNF652 inhibits PD-L1 transcription, whereas depletion of ZNF652 upregulates PD-L1. Loss of ZNF652 in TNBC unleashes PD-L1-mediated immune evasion both in vitro and in vivo. Significantly, ZNF652 expression is progressively lost during breast cancer progression, and a low ZNF652 level is correlated with elevated PD-L1 expression, less infiltrated CD8+ T cells, and poor prognosis in TNBC. Our study provides insights into PD-L1 regulation and supports the pursuit of ZNF652 as a potential biomarker and drug target for breast cancer immunotherapy.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Immune Evasion , CD8-Positive T-Lymphocytes/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Nat Commun ; 14(1): 5076, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604829

ABSTRACT

The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.


Subject(s)
Chromatin , Nucleosomes , Animals , Adenoviridae , Cell Nucleus , Chromatin/genetics , Genomics , Mammals , NFI Transcription Factors , Humans
8.
Clin Immunol ; 255: 109716, 2023 10.
Article in English | MEDLINE | ID: mdl-37544491

ABSTRACT

Regulatory T cells (Tregs) are key regulators for the inflammatory response and play a role in maintaining the immune tolerance. Type 1 diabetes (T1D) is a relatively common autoimmune disease that results from the loss of immune tolerance to ß-cell-associated antigens. Preclinical models have demonstrated the safety and efficacy of Tregs given in transplant rejection and autoimmune diseases such as T1D. Adoptive transfer of Tregs has been utilized in clinical trials for over a decade. However, the achievement of the adoptive transfer of Tregs therapy in clinical application remains challenging. In this review, we highlight the characterization of Tregs and compare the differences between umbilical cord blood and adult peripheral blood-derived Tregs. Additionally, we summarize conditional modifications in the expansion of Tregs in clinical trials, especially for the treatment of T1D. Finally, we discuss the existing technical challenges for Tregs in clinical trials for the treatment of T1D.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Adult , Humans , Diabetes Mellitus, Type 1/therapy , T-Lymphocytes, Regulatory , Fetal Blood , Immune Tolerance
9.
BMC Pediatr ; 23(1): 56, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36732712

ABSTRACT

BACKGROUND: The recombination-activating gene 1 (RAG1) protein is essential for the V (variable)-D (diversity)-J (joining) recombination process. Mutations in RAG1 have been reported to be associated with several types of immune disorders. Typical clinical features driven by RAG1 variants include persistent infections, severe lymphopenia, and decreased immunoglobulin levels . CASE PRESENTATION: In this study, a 2-month-24-days-old infant with recurrent fever was admitted to our hospital with multiple infections and absence of T and B lymphocytes. The infant was diagnosed with severe combined immunodeficiency (SCID). A homozygous variation c.2147G>A (NM_000448.2: exonme2: c.2147G>A (p.Arg716Gln)) was identified in the RAG1 gene using whole-exome sequencing and Sanger sequencing. The predicted 3D structure of variant RAG1 indicated altered protein stability. Additionally, decreased expression of variant RAG1 gene was detected at both the mRNA and protein levels. CONCLUSIONS: Our study identified a novel homozygous variant in RAG1 gene that causes SCID. This finding expands the variant spectrum of RAG1 in SCID and provides further evidence for the clinical diagnosis of SCID.


Subject(s)
Severe Combined Immunodeficiency , Infant , Humans , Severe Combined Immunodeficiency/diagnosis , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/complications , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , T-Lymphocytes/metabolism , Mutation , Genes, RAG-1
10.
Sci Transl Med ; 14(669): eabo2628, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36322627

ABSTRACT

Promoting immune tolerance to transplanted organs can minimize the amount of immunosuppressive drugs that patients need to take, reducing lifetime risks of mortality and morbidity. Regulatory T cells (Tregs) are essential for immune tolerance, and preclinical studies have shown their therapeutic efficacy in inducing transplantation tolerance. Here, we report the results of a phase 1/2 trial (ARTEMIS, NCT02474199) of autologous donor alloantigen-reactive Treg (darTreg) therapy in individuals 2 to 6 years after receiving a living donor liver transplant. The primary efficacy endpoint was calcineurin inhibitor dose reduction by 75% with stable liver function tests for at least 12 weeks. Among 10 individuals who initiated immunosuppression withdrawal, 1 experienced rejection before planned darTreg infusion, 5 received darTregs, and 4 were not infused because of failure to manufacture the minimal infusible dose of 100 × 106 cells. darTreg infusion was not associated with adverse events. Two darTreg-infused participants reached the primary endpoint, but an insufficient number of recipients were treated for assessing the efficacy of darTregs. Mechanistic studies revealed generalized Treg activation, senescence, and selective reduction of donor reactivity after liver transplantation. Overall, the ARTEMIS trial features a design concept for evaluating the efficacy of Treg therapy in transplantation. The mechanistic insight gained from the study may help guide the design of future trials.


Subject(s)
Liver Transplantation , Transplantation Tolerance , Humans , Liver Transplantation/methods , T-Lymphocytes, Regulatory , Graft Rejection/prevention & control , Living Donors
11.
Front Cardiovasc Med ; 9: 863687, 2022.
Article in English | MEDLINE | ID: mdl-35711366

ABSTRACT

Background: Although the available evidence has indicated a link between elevated serum uric acid (SUA) level and dyslipidemia, the potential contribution of SUA on lipid profiles remains unclear. Experimental and clinical studies have revealed several mechanisms through which high serum angiopoietin-like protein 4 (ANGPTL4) level exerts deleterious effects on lipid metabolism, but the role of ANGPTL4 in SUA-associated dyslipidemia has not been well studied, so far. Methods: A total of 80 subjects were classified into high SUA group (n = 40) and low SUA group (n = 40) by the median value of SUA in the whole study population. Serum ANGPTL4 levels were determined by enzyme-linked immunosorbent assays. Results: In our study, we observed that not only serum triglyceride level [1.03 (0.78, 1.50) mmol/L vs. 1.59 (1.18, 2.37) mmol/L, p = 0.001] but also serum triglyceride-rich lipoprotein cholesterol (TRL-C) level [0.38 (0.32, 0.45) mmol/L vs. 0.46 (0.34, 0.54) mmol/L, p = 0.012] were significantly elevated in high SUA group. Additionally, serum ANGPTL4 in high SUA group was higher than in low SUA group [15.81 (11.88, 20.82) ng/ml vs. 22.13 (17.88, 32.09) ng/ml, p = 0.000]. Moreover, in all subjects, TRL-C levels were positively associated with SUA (r = 0.26, p = 0.023, n = 80) and ANGPTL4 levels (r = 0.24, p = 0.036, n = 80). Using stepwise multiple regression analysis to adjust for potential confounders, SUA was discovered to be an independent contributor to serum ANGPTL4 (p = 0.023). At the same time, serum ANGPTL4 was an independent contributor to the level of TRL-C (p = 0.000). However, the correlation between SUA and TRL-C disappeared after controlling for ANGPTL4 level. Conclusion: Serum uric acid was positively correlated to TRL-C. ANGPTL4 may be an interplay between SUA and associated elevation of TRL-C.

12.
Am J Transplant ; 22(9): 2237-2245, 2022 09.
Article in English | MEDLINE | ID: mdl-35434896

ABSTRACT

Alloantigen-specific regulatory T cell (Treg) therapy is a promising approach for suppressing alloimmune responses and minimizing immunosuppression after solid organ transplantation. Chimeric antigen receptor (CAR) targeting donor alloantigens can confer donor reactivity to Tregs. However, CAR Treg therapy has not been evaluated in vascularized transplant or multi-MHC mismatched models. Here, we evaluated the ability of CAR Tregs targeting HLA-A2 (A2-CAR) to prolong the survival of heterotopic heart transplants in mice. After verifying the in vitro activation, proliferation, and enhanced suppressive function of A2-CAR Tregs in the presence of A2-antigen, we analyzed the in vivo function of Tregs in C57BL/6 (B6) mice receiving A2-expressing heart allografts. A2-CAR Treg infusion increased the median survival of grafts from B6.HLA-A2 transgenic donors from 23 to 99 days, whereas median survival with polyclonal Treg infusion was 35 days. In a more stringent model of haplo-mismatched hearts from BALB/cxB6.HLA-A2 F1 donors, A2-CAR Tregs slightly increased median graft survival from 11 to 14 days, which was further extended to >100 days when combined with a 9-day course of rapamycin treatment. These findings demonstrate the efficacy of CAR Tregs, alone or in combination with immunosuppressive agents, toward protecting vascularized grafts in fully immunocompetent recipients.


Subject(s)
Receptors, Chimeric Antigen , Allografts , Animals , Graft Rejection/etiology , Graft Survival , HLA-A2 Antigen , Isoantigens , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Regulatory
13.
Front Vet Sci ; 8: 740472, 2021.
Article in English | MEDLINE | ID: mdl-34746280

ABSTRACT

Wild aquatic birds are the primary natural reservoir of influenza A viruses (IAVs), although a small number of viruses can spill over to mammals and circulate. The focus of IAV infection in mammals was largely limited to humans and swine variants, until the emergence of H3N2 canine influenza viruses (CIVs), which provides new perspective for interspecies transmission of the virus. In this study, we captured 54 canine-adaptive signatures in H3N2 CIVs through entropy computation, which were largely concentrated in the interaction region of polymerase proteins on ribonucleoprotein complex. The receiver operating characteristic curves of these sites showed >95% accuracy in distinguishing between the hosts. Nine of the 54 canine-adaptive signatures were shared in avian-human/equine or equine-canine (PB2-82; PB1-361; PA-277; HA-81, 111, 172, 196, 222, 489), suggesting their involvement in canine adaptation. Furthermore, we found that IAVs can establish persistent transmission in lower mammals with greater ease compared to higher mammals, and 25 common adaptation signatures of H3 IAVs were observed in diverse avian-mammals comparison. There were few human-like residues in H3N2 CIVs, which suggested a low risk of human infection. Our study highlights the necessity of identifying and monitoring the emerging adaptive mutations in companion animals by enhanced surveillance and provides a basis for mammal adaptation of avian influenza viruses.

14.
Signal Transduct Target Ther ; 6(1): 375, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34728602

ABSTRACT

The scope and variety of the metabolic intermediates from the mitochondrial tricarboxylic acid (TCA) cycle that are engaged in epigenetic regulation of the chromatin function in the nucleus raise an outstanding question about how timely and precise supply/consumption of these metabolites is achieved in the nucleus. We report here the identification of a nonclassical TCA cycle in the nucleus (nTCA cycle). We found that all the TCA cycle-associated enzymes including citrate synthase (CS), aconitase 2 (ACO2), isocitrate dehydrogenase 3 (IDH3), oxoglutarate dehydrogenase (OGDH), succinyl-CoA synthetase (SCS), fumarate hydratase (FH), and malate dehydrogenase 2 (MDH2), except for succinate dehydrogenase (SDH), a component of electron transport chain for generating ATP, exist in the nucleus. We showed that these nuclear enzymes catalyze an incomplete TCA cycle similar to that found in cyanobacteria. We propose that the nTCA cycle is implemented mainly to generate/consume metabolic intermediates, not for energy production. We demonstrated that the nTCA cycle is intrinsically linked to chromatin dynamics and transcription regulation. Together, our study uncovers the existence of a nonclassical TCA cycle in the nucleus that links the metabolic pathway to epigenetic regulation.


Subject(s)
Cell Nucleus/genetics , Chromatin/genetics , Citric Acid Cycle/genetics , Epigenesis, Genetic/genetics , Aconitate Hydratase/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Citrate (si)-Synthase/genetics , Cyanobacteria/genetics , Cyanobacteria/metabolism , Energy Metabolism/genetics , Fumarate Hydratase/genetics , Humans , Isocitrate Dehydrogenase/genetics , Ketoglutarate Dehydrogenase Complex/genetics , Malate Dehydrogenase/genetics , Transcription, Genetic , Tricarboxylic Acids/metabolism
15.
J Exp Med ; 218(8)2021 08 02.
Article in English | MEDLINE | ID: mdl-34115115

ABSTRACT

Naturally occurring cases of monogenic type 1 diabetes (T1D) help establish direct mechanisms driving this complex autoimmune disease. A recently identified de novo germline gain-of-function (GOF) mutation in the transcriptional regulator STAT3 was found to cause neonatal T1D. We engineered a novel knock-in mouse incorporating this highly diabetogenic human STAT3 mutation (K392R) and found that these mice recapitulated the human autoimmune diabetes phenotype. Paired single-cell TCR and RNA sequencing revealed that STAT3-GOF drives proliferation and clonal expansion of effector CD8+ cells that resist terminal exhaustion. Single-cell ATAC-seq showed that these effector T cells are epigenetically distinct and have differential chromatin architecture induced by STAT3-GOF. Analysis of islet TCR clonotypes revealed a CD8+ cell reacting against known antigen IGRP, and STAT3-GOF in an IGRP-reactive TCR transgenic model demonstrated that STAT3-GOF intrinsic to CD8+ cells is sufficient to accelerate diabetes onset. Altogether, these findings reveal a diabetogenic CD8+ T cell response that is restrained in the presence of normal STAT3 activity and drives diabetes pathogenesis.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Immune Tolerance/genetics , Mutation/genetics , STAT3 Transcription Factor/genetics , Animals , Autoimmunity , Cell Proliferation , Chemotaxis/genetics , Cross-Priming/immunology , Cytotoxicity, Immunologic/genetics , Disease Models, Animal , Epigenesis, Genetic , Gain of Function Mutation , Heterozygote , Humans , Mice , Phenotype , Up-Regulation
16.
Mol Cell ; 81(14): 2960-2974.e7, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34111398

ABSTRACT

The transition of oxidized 5-methylcytosine (5mC) intermediates into the base excision repair (BER) pipeline to complete DNA demethylation remains enigmatic. We report here that UHRF2, the only paralog of UHRF1 in mammals that fails to rescue Uhrf1-/- phenotype, is physically and functionally associated with BER complex. We show that UHRF2 is allosterically activated by 5-hydroxymethylcytosine (5hmC) and acts as a ubiquitin E3 ligase to catalyze K33-linked polyubiquitination of XRCC1. This nonproteolytic action stimulates XRCC1's interaction with the ubiquitin binding domain-bearing RAD23B, leading to the incorporation of TDG into BER complex. Integrative epigenomic analysis in mouse embryonic stem cells reveals that Uhrf2-fostered TDG-RAD23B-BER complex is functionally linked to the completion of DNA demethylation at active promoters and that Uhrf2 ablation impedes DNA demethylation on latent enhancers that undergo poised-to-active transition during neuronal commitment. Together, these observations highlight an essentiality of 5hmC-switched UHRF2 E3 ligase activity in commissioning the accomplishment of active DNA demethylation.


Subject(s)
5-Methylcytosine/analogs & derivatives , Allosteric Regulation/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , X-ray Repair Cross Complementing Protein 1/genetics , 5-Methylcytosine/metabolism , Animals , Cell Line , Cell Line, Tumor , DNA Demethylation , DNA Methylation/genetics , DNA Repair/genetics , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , MCF-7 Cells , Mice , Mice, Knockout , Promoter Regions, Genetic/genetics , Protein Binding/genetics
17.
Front Immunol ; 12: 783282, 2021.
Article in English | MEDLINE | ID: mdl-35003100

ABSTRACT

Treg therapies are being tested in clinical trials in transplantation and autoimmune diseases, however, the impact of inflammation on Tregs remains controversial. We challenged human Tregs ex-vivo with pro-inflammatory cytokines IL-6 and TNFα and observed greatly enhanced proliferation stimulated by anti-CD3 and anti-CD28 (aCD3/28) beads or CD28 superagonist (CD28SA). The cytokine-exposed Tregs maintained high expression of FOXP3 and HELIOS, demethylated FOXP3 enhancer, and low IFNγ, IL-4, and IL-17 secretion. Blocking TNF receptor using etanercept or deletion of TNF receptor 2 using CRISPR/Cas9 blunted Treg proliferation and attenuated FOXP3 and HELIOS expression. These results prompted us to consider using CD28SA together with IL-6 and TNFα without aCD3/28 beads (beadless) as an alternative protocol for therapeutic Treg manufacturing. Metabolomics profiling revealed more active glycolysis and oxidative phosphorylation, increased energy production, and higher antioxidant potential during beadless Treg expansion. Finally, beadless expanded Tregs maintained suppressive functions in vitro and in vivo. These results demonstrate that human Tregs positively respond to proinflammatory cytokines with enhanced proliferation without compromising their lineage identity or function. This property can be harnessed for therapeutic Treg manufacturing.


Subject(s)
Graft vs Host Disease/therapy , Immunotherapy, Adoptive/methods , Interleukin-6/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor Necrosis Factor-alpha/metabolism , Adult , Aged , Animals , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Etanercept/pharmacology , Female , Forkhead Transcription Factors/analysis , Forkhead Transcription Factors/metabolism , Graft vs Host Disease/immunology , Healthy Volunteers , Humans , Ikaros Transcription Factor/analysis , Ikaros Transcription Factor/metabolism , Male , Mice , Middle Aged , Primary Cell Culture , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Transplantation, Heterologous/adverse effects , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Young Adult
18.
Entropy (Basel) ; 22(6)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-33286457

ABSTRACT

The equipment condition monitoring based on computer hearing is a new pattern recognition approach, and the system formed by it has the advantages of noncontact and strong early warning abilities. Extracting effective features from the sound data of the running power equipment help to improve the equipment monitoring accuracy. However, the sound of running equipment often has the characteristics of serious noise, non-linearity and instationary, which makes it difficult to extract features. To solve this problem, a feature extraction method based on the improved complementary ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and multiscale improved permutation entropy (MIPE) is proposed. Firstly, the ICEEMDAN is utilized to obtain a group of intrinsic mode functions (IMFs) from the sound of running power equipment. The noise IMFs are then identified and eliminated through mutual information (MI) and mean mutual information (meanMI) of IMFs. Next, the normalized mutual information (norMI) and MIPE are calculated respectively, and norMI is utilized to weigh the corresponding MIPE result. Finally, based on the separability criterion, the weighted MIPE results are feature-dimensionally reduced to obtain the multiscale entropy feature of the sound. The experimental results show that the classification accuracies of the method under the conditions of no noise and 5 dB reach 96.7% and 89.9%, respectively. In practice, the proposed method has higher reliability and stability for the sound feature extraction of the running power equipment.

19.
Mol Biol Rep ; 47(10): 7557-7566, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32929654

ABSTRACT

The main pathogenesis of type 1 diabetes mellitus (T1DM) is autoimmune-mediated apoptosis of pancreatic islet ß cells. We sought to characterize the function of microRNA-203a (miR-203a) on pancreatic islet ß cell proliferation and apoptosis. In situ hybridization was used to detect the expression of miR-203a in islet ß cells in normal and hyperglycaemic non-obese diabetic (NOD) mice. Cell proliferation was measured by cell counting kit eight and cell apoptosis was detected using flow cytometry. Insulin receptor substrate 2 (IRS2/Irs2) was determined to be a direct target of miR-203a by Luciferase reporter assay. We detected the effects of miR-203a overexpression or inhibition on proliferation and apoptosis of IRS2-overexpressing or IRS2-knockdown MIN6 cells respectively, and preliminarily explored the downstream targets of the IRS2 pathway. NOD mice model was used to detect miR-203a inhibitor treatment for diabetes. Our experiment showed miR-203a was upregulated in pancreatic ß cells of hyperglycaemic NOD mice. Elevated miR-203a expression inhibited the proliferation and promoted the apoptosis of MIN6 cells. IRS2/Irs2 is a novel target gene directly regulated by miR-203a and miR-203a overexpression downregulated the expression of IRS2. Irs2 silencing reduced cell proliferation and increased apoptosis. Irs2 overexpression could abolish the pro-apoptotic and anti-proliferative effects of miR-203a on MIN6 cells. Hyperglycemia in newly hyperglycemic NOD mice was under control after treatment with miR-203a inhibitor. Our study suggests that miR-203a regulates pancreatic ß cell proliferation and apoptosis by targeting IRS2, treatment with miR-203a inhibitors and IRS2 might provide a new therapeutic strategy for T1DM.


Subject(s)
Apoptosis , Cell Proliferation , Hyperglycemia/metabolism , Insulin Receptor Substrate Proteins/biosynthesis , Insulin-Secreting Cells/metabolism , MicroRNAs/metabolism , Animals , Cell Line , Female , Hyperglycemia/pathology , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred NOD
20.
Sci Adv ; 6(11): eaay4697, 2020 03.
Article in English | MEDLINE | ID: mdl-32201722

ABSTRACT

Previously, we reported that chromodomain Y-like (CDYL) acts as a crotonyl-coenzyme A hydratase and negatively regulates histone crotonylation (Kcr). However, the global CDYL-regulated crotonylome remains unclear. Here, we report a large-scale proteomics analysis for protein Kcr. We identify 14,311 Kcr sites across 3734 proteins in HeLa cells, providing by far the largest crotonylome dataset. We show that depletion of CDYL alters crotonylome landscape affecting diverse cellular pathways. Specifically, CDYL negatively regulated Kcr of RPA1, and mutation of the Kcr sites of RPA1 impaired its interaction with single-stranded DNA and/or with components of resection machinery, supporting a key role of RPA1 Kcr in homologous recombination DNA repair. Together, our study indicates that protein crotonylation has important implication in various pathophysiological processes.


Subject(s)
Co-Repressor Proteins/metabolism , Hydro-Lyases/metabolism , Protein Processing, Post-Translational , Recombinational DNA Repair , Replication Protein A/metabolism , Cell Survival/genetics , Co-Repressor Proteins/genetics , DNA Damage , DNA, Single-Stranded/genetics , Gene Knockdown Techniques , HeLa Cells , Histones/metabolism , Humans , Hydro-Lyases/genetics , Proteome
SELECTION OF CITATIONS
SEARCH DETAIL
...