Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 179: 108266, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32853658

ABSTRACT

Lacosamide is a new-generation anticonvulsant acting on Na+ channels. Compared to the classic anticonvulsants targeting Na+ channels, lacosamide is unique in structure and in its molecular action requiring longer membrane depolarization. Selective binding to the slow inactivated state of Na+ channels was then advocated for lacosamide, although slow binding to the fast inactivated state was alternatively proposed recently. In addition, quantitative characterization of lacosamide action has been deficient. We investigated the interactions between lacosamide and Na+ channels in native mammalian neurons, and found that the apparent dissociation constant (~13.7 µM) of lacosamide to the slow inactivated state is well within the therapeutic concentration range and is much (>15-fold) lower than the dissociation constant of lacosamide to the fast inactivated state. Besides, lacosamide has extremely slow binding rates (<400 M-1sec-1) to the fast but much faster binding rates (>3000 M-1sec-1) to the slow inactivated Na+ channels. Consistent with these biophysical characters, we further demonstrated that lacosamide is much more effective against the repetitive burst discharges with interburst intervals at -60 mV than -80 mV. With preponderant binding to the slow inactivation state in therapeutic concentrations and thus less propensity to affect normal discharges, lacosamide could be a drug of choice for seizure discharges characterized by relatively depolarized interburst intervals, during which more slow inactivated states could be generated and more binding of lacosamide would ensue.


Subject(s)
Lacosamide/metabolism , Lacosamide/pharmacology , Neurons/drug effects , Neurons/metabolism , Sodium Channels/metabolism , Voltage-Gated Sodium Channel Blockers/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology , Animals , Binding Sites/drug effects , Binding Sites/physiology , Dose-Response Relationship, Drug , Female , Hippocampus/drug effects , Hippocampus/metabolism , Kinetics , Lacosamide/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Voltage-Gated Sodium Channel Blockers/pharmacokinetics
2.
Toxicology ; 417: 54-63, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30796972

ABSTRACT

Salinomycin is a polyether ionophore antibiotic having anti-tumorigenic property in various types of cancer. Elevated thymidine phosphorylase (TP) levels, a key enzyme in the pyrimidine nucleoside salvage pathway, are associated with an aggressive disease phenotype and poor prognoses. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. In this study, we report whether Hsp90 inhibitor 17-AAG could enhance salinomycin-induced cytotoxicity in NSCLC cells through modulating TP expression in two non-small-cell lung cancer (NSCLC) cell lines, A549 and H1975. We found that salinomycin increased TP expression in a MKK3/6-p38 MAPK activation manner. Knockdown of TP using siRNA or inactivation of p38 MAPK by pharmacological inhibitor SB203580 enhanced the cytotoxic and growth inhibition effects of salinomycin. In contrast, enforced expression of MKK6E (a constitutively active form of MKK6) reduced the cytotoxicity and cell growth inhibition of salinomycin. Moreover, Hsp90 inhibitor 17-AAG enhanced cytotoxicity and cell growth inhibition of salinomycin in NSCLC cells, which were associated with down-regulation of TP expression and inactivation of p38 MAPK. Together, the Hsp90 inhibition induced TP down-regulation involved in enhancing the salinomycin-induced cytotoxicity in A549 and H1975 cells.


Subject(s)
Carcinoma, Non-Small-Cell Lung/enzymology , Cytotoxins/toxicity , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lung Neoplasms/enzymology , Pyrans/toxicity , Thymidine Phosphorylase/antagonists & inhibitors , A549 Cells , Antineoplastic Agents/toxicity , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Enzymologic , HSP90 Heat-Shock Proteins/biosynthesis , Humans , Thymidine Phosphorylase/biosynthesis , Thymidine Phosphorylase/genetics
3.
Toxicol Res (Camb) ; 7(6): 1247-1256, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30555679

ABSTRACT

Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects that include anti-cancer and anti-inflammatory properties. Xeroderma pigmentosum complementation group C (XPC) protein is an important DNA damage recognition factor in nucleotide excision repair and is involved in regulating non-small cell lung cancer (NSCLC) cell proliferation and viability. Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated clinical activity in NSCLC cells. However, whether astaxanthin and erlotinib could induce synergistic cytotoxicity in NSCLC cells through modulating XPC expression is unknown. In this study, we found that p38 MAPK activation by astaxanthin decreased XPC expression in two human lung adenocarcinoma A549 and H1975 cells. Inactivation of p38 MAPK by pharmacological inhibitor SB203580 or the specific small interfering RNA (siRNA) rescued the astaxanthin-reduced XPC mRNA and protein levels. Enforced expression of XPC cDNA or inhibiting the p38 MAPK activity reduced the cytotoxicity and cell growth inhibition of astaxanthin. In contrast, knockdown of XPC using siRNA enhanced the cytotoxic effects of astaxanthin. Moreover, astaxanthin synergistically enhanced cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells, which were associated with the down-regulation of XPC expression and activation of p38 MAPK. Our findings suggested that the astaxanthin induced p38 MAPK mediated XPC down-regulation enhanced the erlotinib-induced cytotoxicity in A549 and H1975 cells.

4.
Pharmacology ; 102(1-2): 91-104, 2018.
Article in English | MEDLINE | ID: mdl-29953987

ABSTRACT

Etoposide (VP16) is a topoisomerase II inhibitor and has been used for the treatment of non-small cell lung cancer (NSCLC). Xeroderma pigmentosum complementation group C (XPC) protein is a DNA damage recognition factor in nucleotide excision repair and involved in regulating NSCLC cell proliferation and viability. Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. In this study, we report whether Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) enhanced etoposide-induced cytotoxicity in NSCLC cells through modulating the XPC expression. We found that etoposide increased XPC expression in an AKT activation manner in 2 squamous cell carcinoma H1703 and H520 cells. Knockdown of XPC using siRNA or inactivation of AKT by pharmacological inhibitor PI3K inhibitor (LY294002) enhanced the cytotoxic effects of etoposide. In contrast, enforced expression of XPC cDNA or AKT-CA (a constitutively active form of AKT) reduced the cytotoxicity and cell growth inhibition of etoposide. Hsp90 inhibitor 17-AAG enhanced cytotoxicity and cell growth inhibition of etoposide in NSCLC cells, which were associated with the downregulation of XPC expression and inactivation of AKT. Our findings suggested that the Hsp90 inhibition induced XPC downregulation involved in enhancing the etoposide-induced cytotoxicity in H1703 and H520 cells.


Subject(s)
Benzoquinones/pharmacology , Etoposide/pharmacology , Lactams, Macrocyclic/pharmacology , Xeroderma Pigmentosum/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chromones/pharmacology , Down-Regulation/drug effects , Drug Synergism , Humans , Morpholines/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , RNA, Small Interfering/pharmacology
5.
Exp Cell Res ; 357(1): 59-66, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28454878

ABSTRACT

Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor in the treatment of human non-small cell lung cancer (NSCLC). Salinomycin, a polyether antibiotic, has been promising a novel therapeutic agent for lung cancer, and down-regulated the expression of thymidylate synthase (TS) in NSCLC cell lines. Previous study showed that against EGFR and TS was strongly synergistic cytotoxicity in NSCLC cells. In this study, we showed that erlotinib (1.25-10µM) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung squamous cell carcinoma H1703 and adenocarcinoma H1975 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of erlotinib. A combination of erlotinib and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced protein levels of phospho-AKT(Ser473), phospho-AKT(Thr308), and TS. Overexpression of a constitutive active AKT (AKT-CA) or Flag-TS expression vector reversed the salinomycin and erlotinib-induced synergistic cytotoxicity. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the erlotinib-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with erlotinib for lung cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Non-Small-Cell Lung/enzymology , Erlotinib Hydrochloride/pharmacology , Lung Neoplasms/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Pyrans/pharmacology , Thymidylate Synthase/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , ErbB Receptors/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
6.
Regul Toxicol Pharmacol ; 81: 353-361, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27693704

ABSTRACT

Pemetrexed, a multitargeted antifolate agent, has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. Increased expression of thymidylate synthase (TS) is thought to be associated with resistance to pemetrexed. Astaxanthin exhibits a wide range of beneficial effects including anti-cancer and anti-inflammatory properties. In this study, we showed that down-regulating of TS expression in two NSCLC cell lines, human lung adenocarcinoma H1650 and squamous cell carcinoma H1703 cells, with astaxanthin were associated with decreased MKK1/2-ERK1/2 activity. Enforced expression of constitutively active MKK1 (MKK1-CA) vector significantly rescued the decreased TS mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with a MKK1/2 inhibitor (U0126 or PD98059) further decreased the TS expression in astaxanthin-exposed NSCLC cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting ERK1/2 activity enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Combination of pemetrexed and astaxanthin resulted in synergistic enhancing cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-MKK1/2, phopho-ERK1/2, and TS expression. Overexpression of MKK1/2-CA reversed the astaxanthin and pemetrexed-induced synergistic cytotoxicity. Our findings suggested that the down-regulation of MKK1/2-ERK1/2-mediated TS expression by astaxanthin is an important regulator of enhancing the pemetrexed-induced cytotoxicity in NSCLC cells.


Subject(s)
Antineoplastic Agents/pharmacology , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/drug therapy , Pemetrexed/pharmacology , Thymidylate Synthase/biosynthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Gene Expression Regulation, Enzymologic/drug effects , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Structure-Activity Relationship , Thymidylate Synthase/genetics , Xanthophylls/pharmacology
7.
Biochem Pharmacol ; 122: 90-98, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27666600

ABSTRACT

Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2µg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Pyrans/pharmacology , Thymidylate Synthase/metabolism , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Down-Regulation , Drug Therapy, Combination , Humans , Proto-Oncogene Proteins c-akt/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thymidylate Synthase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...