Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Small ; : e2403056, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726792

ABSTRACT

Energy conversion and transfer of enzyme-catalyzed reactions at molecular level are an interesting and challenging scientific topic that helps understanding biological processes in nature. In this study, it is demonstrated that enzyme-catalyzed reactions can enhance diffusion of surrounding molecules and thus accelerate cargo transport within 1D micro/nanochannels. Specifically, urease is immobilized on the inner walls of silica micro/nano-tubes to construct bio-catalytically active micro/nanochannels. The catalytic reaction inside the channels drives a variety of cargoes, including small dye molecules, polymers, and rigid nanoparticles (e.g., quantum dots, QDs), to pass through these micro/nanochannels much faster than they will by free diffusion. The enhanced diffusion of molecular species inside the channels is validated by direct observation of the Brownian motion of tracer particles, and further confirmed by significantly enhanced Raman intensity of reporter molecules. Finite element and Brownian dynamics simulations provide a theoretical understanding of these experimental observations. Furthermore, the effect of the channels' size on the diffusion enhancement is examined. The acceleration effect of the cargo transport through these enzymatically active micro/nanochannels can be turned on or off via chemical activators or inhibitors. This study provides valuable insights on the design of biomimetic channels capable of controlled and efficient transmembrane transport.

2.
ACS Nano ; 17(23): 24343-24354, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38038995

ABSTRACT

Enzyme-catalyzed micro/nanomotors (MNMs) exhibit tremendous potential for biological isolation and sensing, because of their biocompatibility, versatility, and ready access to biofuel. However, flow field generated by enzyme-catalyzed reactions might significantly hinder performance of surface-linked functional moieties, e.g., the binding interaction between MNMs and target cargos. Herein, we develop enzymatic micromotors with spatially selective distribution of urease to enable the independent operation of various modules and facilitate the capture and sensing of exosomes. When urease is modified into the motors' cavity, the flow field from enzyme catalysis has little effect on the exterior surface of the motors. The active motion and encapsulating urease internally result in enhancement of ∼35% and 18% in binding efficiency of target cargos, e.g., exosomes as an example here, compared to their static counterparts and moving micromotors with urease modified externally, respectively. Once exosomes are trapped, they can be transferred to a clean environment by the motors for Raman signal detection and/or identification using the surface Raman enhancement scattering (SERS) effect of coated gold nanoshell. The biocatalytic micromotors, achieving spatial separation between driving module and function module, offer considerable promise for future design of multifunctional MNMs in biomedicine and diagnostics.


Subject(s)
Exosomes , Nanoshells , Urease , Catalysis , Biocatalysis
3.
Micromachines (Basel) ; 14(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37893281

ABSTRACT

Thermoelectric materials are widely used in refrigeration chips, thermal power generation, catalysis and other fields. Mg3Bi2-based thermoelectric material is one of the most promising thermoelectric materials. Herein, the Mg3Bi2-based samples were prepared by high temperature synthesis, and the influence of Mg/Sb content on the electrical transport properties and semi-conductivity/semi-metallicity of the materials has been studied. The results indicate that the efficiency of introducing electrons from excess Mg prepared by high temperature synthesis is lower than that introduced by ball milling, due to the high vapor pressure of Mg. The doping of Sb/Te at the Bi site would make it easier for the material to change from p-type conduction to n-type conduction. With the increase in Mg content, the semi-conductivity of the material becomes weaker, the semi-metallicity becomes stronger, and the corresponding conductivity increases. With the increase in Sb content, the samples exhibit the opposite changes. The highest power factor of ~1.98 mWm-1K-2 is obtained from the Mg3.55Bi1.27Sb0.7Te0.03 sample.

4.
Micromachines (Basel) ; 14(9)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37763920

ABSTRACT

BiCuSeO has great application prospects in thermoelectric power generation and thermoelectric catalysis, but it is limited by its lower thermoelectric performance. Herein, BiCuSeO bulk materials were prepared using a solid-phase reaction method and a ball-milling method combined with spark plasma sintering, and then the thermoelectric properties were improved by synergistically increasing carrier concentration and mobility. Al was adopted to dope into the BiCuSeO matrix, aiming to adjust the carrier mobility through energy band adjustment. The results show that Al doping would widen the bandgap and enhance the carrier mobility of BiCuSeO. After Al doping, the thermoelectric properties of the material are improved in the middle- and high-temperature range. Based on Al doping, Pb is adopted as the doping element to dope BiCuSeO to modify the carrier concentration. The results show that Al/Pb dual doping in the BiCuSeO matrix can increase the carrier concentration under the premise of increasing carrier mobility. Therefore, the electrical conductivity of BiCuSeO can be improved while maintaining a large Seebeck coefficient. The power factor of Al/Pb doping reached ~7.67 µWcm-1K-2 at 873 K. At the same time, the thermal conductivity of all doped samples within the test temperature range maintained a low level (<1.2 Wm-1K-1). Finally, the ZT value of the Al/Pb-doped BiCuSeO reached ~1.14 at 873 K, which is ~2.72 times that of the pure phase, and the thermoelectric properties of the matrix were effectively improved.

5.
Langmuir ; 39(19): 6932-6945, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37148258

ABSTRACT

Controlled colloidal levitation is key to many applications. Recently, it was discovered that polymer microspheres were levitated to a few micrometers in aqueous solutions in alternating current (AC) electric fields. A few mechanisms have been proposed to explain this AC levitation such as electrohydrodynamic flows, asymmetric rectified electric fields, and aperiodic electrodiffusiophoresis. Here, we propose an alternative mechanism based on dielectrophoresis in a spatially inhomogeneous electric field gradient extending from the electrode surface micrometers into the bulk. This field gradient is derived from electrode polarization, where counterions accumulate near electrode surfaces. A dielectric microparticle is then levitated from the electrode surface to a height where the dielectrophoretic lift balances gravity. The dielectrophoretic levitation mechanism is supported by two numerical models. One model assumes point dipoles and solves for the Poisson-Nernst-Planck equations, while the second model incorporates a dielectric sphere of a realistic size and permittivity and uses the Maxwell-stress tensor formulation to solve for the electrical body force. In addition to proposing a plausible levitation mechanism, we further demonstrate that AC colloidal levitation can be used to move synthetic microswimmers to controlled heights. This study sheds light on understanding the dynamics of colloidal particles near an electrode and paves the way to using AC levitation to manipulate colloidal particles, active or passive.

6.
ACS Nano ; 17(5): 5095-5107, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36861648

ABSTRACT

In nature, there exist a variety of transport proteins on cell membranes capable of actively moving cargos across biological membranes, which plays a vital role in the living activities of cells. Emulating such biological pumps in artificial systems may bring in-depth insights on the principles and functions of cell behaviors. However, it poses great challenges due to difficulty in the sophisticated construction of active channels at the cellular scale. Here, we report the development of bionic micropumps for active transmembrane transportation of molecular cargos across living cells that is realized by enzyme-powered microrobotic jets. By immobilizing urease onto the surface of a silica-based microtube, the prepared microjet is capable of catalyzing the decomposition of urea in surrounding environments and generating microfluidic flow through the inside channel for self-propulsion, which is verified by both numerical simulation and experimental results. Therefore, once naturally endocytosed by the cell, the microjet enables the diffusion and, more importantly, active transportation of molecular substances between the extracellular and intracellular ends with the assistance of generated microflow, thus serving as an artificial biomimetic micropump. Furthermore, by constructing enzymatic micropumps on cancer cell membranes, enhanced delivery of anticancer doxorubicin into cells as well as improved killing efficacy are achieved, which demonstrates the effectiveness of the active transmembrane drug transport strategy in cancer treatment. This work not only extends the applications of micro/nanomachines in biomedical fields but also provides a promising platform for future cell biology research at cellular and subcellular scales.


Subject(s)
Microfluidics , Pharmaceutical Preparations , Biological Transport , Microfluidics/methods , Cell Membrane/metabolism , Diffusion
7.
ACS Nano ; 17(6): 5894-5904, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36912818

ABSTRACT

Steering micromotors is important for using them in practical applications and as model systems for active matter. This functionality often requires magnetic materials in the micromotor, taxis behavior of the micromotor, or the use of specifically designed physical boundaries. Here, we develop an optoelectronic strategy that steers micromotors with programmable light patterns. In this strategy, light illumination turns hydrogenated amorphous silicon conductive, generating local electric field maxima at the edge of the light pattern that attracts micromotors via positive dielectrophoresis. As an example, metallo-dielectric Janus microspheres that self-propelled under alternating current electric fields were steered by static light patterns along customized paths and through complex microstructures. Their long-term directionality was also rectified by ratchet-shaped light patterns. Furthermore, dynamic light patterns that varied in space and time enabled more advanced motion controls such as multiple motion modes, parallel control of multiple micromotors, and the collection and transport of motor swarms. This optoelectronic steering strategy is highly versatile and compatible with a variety of micromotors, and thus it possesses the potential for their programmable control in complex environments.

8.
ACS Nano ; 17(5): 4729-4739, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36815761

ABSTRACT

The ability to steer micromotors in specific directions and at precise speeds is highly desired for their use in complex environments. However, a generic steering strategy that can be applied to micromotors of all types and surface coatings is yet to be developed. Here, we report that ultrasound of ∼100 kHz can spin a spherical micromotor so that it turns left or right when moving forward, or that it moves in full circles. The direction and angular speeds of their spinning and the radii of circular trajectories are precisely tunable by varying ultrasound voltages and frequencies, as well as particle properties such as its radius, materials, and coating thickness. Such spinning is hypothesized to originate from the circular microstreaming flows localized around a solid microsphere vibrating in ultrasound. In addition to causing a micromotor to spin, such streaming flows also helped release cargos from a micromotor during a capture-transport-release mission. Localized microstreaming does not depend on or interference with a specific propulsion mechanism and can steer a wide variety of micromotors. This work suggests that ultrasound can be used to steer microrobots in complex, biologically relevant environments as well as to steer microorganisms and cells.

9.
J Craniofac Surg ; 33(8): e810-e812, 2022.
Article in English | MEDLINE | ID: mdl-36409853

ABSTRACT

Cystic hygroma is one type of the benign malformations and typically located in the neck, clavicle, and others, in children under the age of 5 years. However, the incidence of giant cervicomediastinal giant cystic hygroma is very rare, especially in adulthood. Such a location and age make its diagnosis difficult because they are usually asymptomatic. Complete surgical resection seems impossible while multiple sites are involved. Herein, we present a case of giant cervicomediastinal cystic hygroma, describing the clinical presentation, radiographic features, and OK-432 sclerotherapy. In conclusion, repeated OK-432 sclerotherapy may be an effective treatment option in giant cervicomediastinal cystic hygroma. Pay close attention to patient's symptoms and vital signs, adjusting the OK-432 dose throughout the process.


Subject(s)
Lymphangioma, Cystic , Picibanil , Child , Humans , Adult , Child, Preschool , Picibanil/therapeutic use , Lymphangioma, Cystic/diagnostic imaging , Lymphangioma, Cystic/therapy , Sclerotherapy , Neck , Clavicle
10.
ACS Nano ; 16(9): 14666-14678, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36018321

ABSTRACT

Miniaturization of synthetic micro/nanomotors (MNMs) brings great application prospects but limits their functionalization ability. Here, we report self-fueled metal organic framework (MOF) micromotors that are endowed with capabilities of self-propulsion and antibacterial therapy by their material's intrinsic properties. The spontaneous degradation of the MOF micromotors in water would release their own constituting components of ions which act as fuels to propel themselves by ionic diffusionphoresis with a high energy conversion efficiency. Meanwhile, the metal cations released from the MOF micromotors can also serve as antibacterial reagents to kill Escherichia coli (E. coli) with motion enhanced efficacy, which could significantly accelerate the wound closure in a bacterially infected wound model in vivo. Our work provides a general guidance for constructing functional MNMs by taking advantage of the motors' own materials to achieve self-propulsion and on-demand task assignments, which would promote future development of highly integrated micro/nanorobotic systems at micro/nanoscale.


Subject(s)
Metal-Organic Frameworks , Anti-Bacterial Agents/pharmacology , Escherichia coli , Metal-Organic Frameworks/pharmacology , Motion , Water
11.
ACS Nano ; 16(8): 12755-12766, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35857820

ABSTRACT

Traveling waves in a reaction-diffusion system are essential for long-range communication in living organisms and inspire biomimetic materials of similar capabilities. One recent example is the traveling motion waves among photochemically oscillating, silver (Ag)-containing colloids. Being able to manipulate these colloidal waves holds the key for potential applications. Here, we have discovered that these motion waves can be confined by light patterns and that the chemical clocks of silver particles are moved forward by reducing local light intensity. Using these discoveries as design principles, we have applied structured light technology for the precise and programmable control of colloidal motion waves, including their origins, propagation directions, paths, shapes, annihilation, frequency, and speeds. We have also used the controlled propagation of colloidal waves to guide chemical messages along a predefined path to activate a population of micromotors located far from the signal. Our demonstrated capabilities in manipulating colloidal waves in space and time offer physical insights on their operation and expand their usefulness in the fundamental study of reaction-diffusion processes. Moreover, our findings inspire biomimetic strategies for the directional transport of mass, energy, and information at micro- or even nanoscales.


Subject(s)
Colloids , Silver , Colloids/chemistry , Diffusion , Motion , Physical Phenomena
12.
Sci Adv ; 8(21): eabn9130, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613263

ABSTRACT

Traveling waves are common in biological and synthetic systems, including the recent discovery that silver (Ag) colloids form traveling motion waves in H2O2 and under light. Here, we show that this colloidal motion wave is a heterogeneous excitable system. The Ag colloids generate traveling chemical waves via reaction-diffusion, and either self-propel through self-diffusiophoresis ("ballistic waves") or are advected by diffusio-osmotic flows from gradients of neutral molecules ("swarming waves"). Key results include the experimental observation of traveling waves of OH- with pH-sensitive fluorescent dyes and a Rogers-McCulloch model that qualitatively and quantitatively reproduces the key features of colloidal waves. These results are a step forward in elucidating the Ag-H2O2-light oscillatory system at individual and collective levels. In addition, they pave the way for using colloidal waves either as a platform for studying nonlinear phenomena, or as a tool for colloidal transport and for information transmission in microrobot ensembles.

13.
Angew Chem Int Ed Engl ; 61(24): e202201018, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35366368

ABSTRACT

Understanding and controlling the swimming direction of a synthetic nano- and micromotor holds fundamental and applied significance. Here, we focus on platinum-containing Janus colloids that catalytically decompose H2 O2 into O2 , an archetypical model of chemical micromotor. We discover that platinum oxides (primarily PtO) are produced on Pt films sputter-coated in O2 plasma, and PtO reverses the motor possibly by self-electrophoresis. Using this knowledge, micromotors moving in either direction were fabricated by intentionally introducing or removing PtO. These findings challenge the conventional wisdom that a Pt micromotor is powered by Pt alone, and open up new avenues for controlling the swimming directions of a micro- and nanomachine.


Subject(s)
Oxides , Platinum , Colloids
14.
Angew Chem Int Ed Engl ; 61(12): e202116041, 2022 03 14.
Article in English | MEDLINE | ID: mdl-34994039

ABSTRACT

Distinguishing the operating mechanisms of nano- and micromotors powered by chemical gradients, i.e. "autophoresis", holds the key for fundamental and applied reasons. In this article, we propose and experimentally confirm that the speeds of a self-diffusiophoretic colloidal motor scale inversely to its population density but not for self-electrophoretic motors, because the former is an ion source and thus increases the solution ionic strength over time while the latter does not. They also form clusters in visually distinguishable and quantifiable ways. This pair of rules is simple, powerful, and insensitive to the specific material composition, shape or size of a colloidal motor, and does not require any measurement beyond typical microscopy. These rules are not only useful in clarifying the operating mechanisms of typical autophoretic micromotors, but also in predicting the dynamics of unconventional ones that are yet to be experimentally realized, even those involving enzymes.


Subject(s)
Electrophoresis
15.
J Am Chem Soc ; 143(31): 12154-12164, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34339185

ABSTRACT

A popular principle in designing chemical micromachines is to take advantage of asymmetric chemical reactions such as the catalytic decomposition of H2O2. Contrary to intuition, we use Janus micromotors half-coated with platinum (Pt) or catalase as an example to show that this ingredient is not sufficient in powering a micromotor into self-propulsion. In particular, by annealing a thin Pt film on a SiO2 microsphere, the resulting microsphere half-decorated with discrete Pt nanoparticles swims ∼80% more slowly than its unannealed counterpart in H2O2, even though they both catalytically produce comparable amounts of oxygen. Similarly, SiO2 microspheres half-functionalized with the enzyme catalase show negligible self-propulsion despite high catalytic activity toward decomposing H2O2. In addition to highlighting how surface morphology of a catalytic cap enables/disables a chemical micromotor, this study offers a refreshed perspective in understanding how chemistry powers nano- and microscopic objects (or not): our results are consistent with a self-electrophoresis mechanism that emphasizes the electrochemical decomposition of H2O2 over nonelectrochemical pathways. More broadly, our finding is a critical piece of the puzzle in understanding and designing nano- and micromachines, in developing capable model systems of active colloids, and in relating enzymes to active matter.

16.
ACS Nano ; 14(5): 5360-5370, 2020 05 26.
Article in English | MEDLINE | ID: mdl-32271537

ABSTRACT

Spatiotemporal coordination of a nanorobot ensemble is critical for their operation in complex environments, such as tissue removal or drug delivery. Current strategies of achieving this task, however, rely heavily on sophisticated, external manipulation. We here present an alternative, biomimetic strategy by which oscillating Ag Janus micromotors spontaneously synchronize their dynamics as chemically coupled oscillators. By quantitatively tracking the kinetics at both an individual and cluster level, we find that synchronization emerges as the oscillating entities are increasingly coupled as they approach each other. In addition, the synchronized beating of a cluster of these oscillating colloids was found to be dominated by substrate electroosmosis, revealed with the help of an acoustic trapping technique. This quantitative, systematic study of synchronizing micromotors could facilitate the design of biomimetic nanorobots that spontaneously communicate and organize at micro- and nanoscales. It also serves as a model system for nonlinear active matter.

17.
ACS Appl Mater Interfaces ; 12(10): 11843-11851, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32092253

ABSTRACT

Photochemically powered micromotors are prototype microrobots, and spatiotemporal control is pivotal for a wide range of potential applications. Although their spatial navigation has been extensively studied, temporal control of photoactive micromotors remains much less explored. Using Ag-based oscillating micromotors as a model system, a strategy is presented for the controlled modulation of their individual and collective dynamics via periodically switching illumination on and off. In particular, such temporal light modulation drives individual oscillating micromotors into a total of six regimes of distinct dynamics, as the light-toggling frequencies vary from 0 to 103 Hz. On an ensemble level, toggling light at 5 Hz gives rise to controlled, reversible clustering of oscillating micromotors and self-assembly of tracer microspheres into colloidal crystals. A qualitative mechanism based on Ag-catalyzed decomposition of H2O2 is given to account for some, but not all, of the above observations. This study might potentially inspire more sophisticated temporal control of micromotors and the development of smart, biomimetic materials that respond to environmental stimuli that not only change in space but also in time.

18.
Polymers (Basel) ; 11(3)2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30960508

ABSTRACT

One of the major challenges in the removal of organic pollutants is to design a material with high efficiency and high flux that can remove both cationic and anionic dyes, oil-in-water (O/W) emulsion and heavy metal ions. Herein, we constructed novel chemically stabilized MgAl-layered-double-hydroxide/sepiolite (MgAl-LDH/Sep) composite membranes via 3D hierarchical architecture construction methods. These membranes were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD), etc. Benefiting from the presence of hydrophilic functional groups on the surface of the film, the membranes show an enhanced water flux (~1200 L·m-2 h-1), while keeping a high dyes rejection (above 99.8% for anionic and cationic dyes). Moreover, the CA membrane coupled with MgAl-LDH/Sep exhibits a multifunctional characteristic for the efficient removal of mesitylene (99.2%), petroleum ether (99.03%), decane (99.07%), kerosene (99.4%) and heavy metal ion in water due to the layer-by-layer sieving. This hierarchical architecture is proved to have excellent environmental and chemical stability. Therefore, the membrane has potential in the treatment of sewage wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...